• Title/Summary/Keyword: decomposition behavior

Search Result 405, Processing Time 0.026 seconds

Behavior and Decomposition Velocity of Pollutants on Various Forms from Domestic Sewage in Small-scale Sewage Treatment Plant by Natural Purification Method (자연정화공법에 의한 농촌 전원독립가구 하수처리장에서 하수 중 오염물질의 존재형태별 거동과 분해속도)

  • Seo, Dong-Cheol;Kim, Hyung-Jun;Park, Woo-Young;Lim, Jong-Sir;Hwang, Seung-Ha;Park, Chan-Hoon;Choi, Jeong-Hwan;Lee, Hong-Jae;Lee, Do-Jin;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.18-26
    • /
    • 2008
  • Behavior and decomposition velocity of pollutants on various forms from domestic sewage in sewage treatment plant were investigated in order to obtain the basic data for improving the removal efficiency of pollutants and to reduce the area in constructed wetland by natural purification method. The removal amounts of BODs and CODs in aerobic bed were significantly higher than those of the other beds. In aerobic bed, the removal amounts of IBOD and ICOD were more than those for SBOD and SCOD, respectively, whereas the removal amounts of BODs and CODs in anoxic and anaerobic beds were little different. The removal amounts of SSs in aerobic bed were also higher than those for the other beds, and the removal amounts of VSS in all beds were more than those for FSS. The removal amounts of DTN and DTP in all beds were more than those for STN and STP, respectively. In addition, the decomposition velocities of TBOD, TCOD and TSS in aerobic bed were 30.79, 17.15 and 29.96 $day^{-1}$. Moreover, the decomposition velocities of BODs, CODs and SSs in aerobic bed were very rapid than those in the other beds. On the other hand, the decomposition velocities of BODs, CODs and SSs in anoxic and anaerobic beds were a little different regardless of the forms of pollutant. The decomposition velocities constants of T-N in aerobic, anoxic and anaerobic beds were 4.78, 0.12 and 0.10 $day^{-1}$, respectively. Moreover, the decomposition velocities constants of T-P in aerobic, anoxic and anaerobic beds were 13.09, 0.12 and 0.13 $day^{-1}$ respectively. The decomposition velocity of T-Ns and T-Ps in aerobic bed were slightly rapid than those in the other beds, whereas the decomposition velocities of T-Ns and T-Ps in anoxic and anaerobic beds were slightly different regardless of the forms of pollutant.

Nonlinear Analysis of RC Slabs based on the Strain Decomposition Technique (변형률 분할기법을 이용한 철근콘크리트 슬래브의 비선형 유한요소해석)

  • Chung Won-Seok;Woo Young-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.433-439
    • /
    • 2005
  • This paper describes a reinforced concrete crack model, which utilizes a strain decomposition technique. The strain decomposition technique enables the explicit inclusion of physical behavior across the cracked concrete surface such as aggregate interlock and dowel action rather than intuitively defining the shear retention factor. The proposed concrete crack model is integrated into the commercial finite element software ABAQUS shell elements through a user-supplied material subroutine. The FE results have been compared to experimental results reported by other researchers. The proposed bridge FE model is capable of predicting the initial cracking load level, the ultimate load capacity, and the crack pattern with good accuracy.

  • PDF

Synthesis of Organo-montmorillonite by Intercalation Reaction and its Kinetic Study (Intercalation 반응에 의한 Organo-montmorillonite의 합성 및 반응속도 연구)

  • 김창은;최진호;형경우
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.1
    • /
    • pp.67-73
    • /
    • 1984
  • A stable intercalation complex was formed by adsorption of alcanol (ROH, R; $C_{10}H_2$, $C_{12}H_{25}$, $C_{14}H_{29}$) on the surfaces of Yongil bentonite in which the interlayer cation had been exchanged by n-decylammonium ion $(C_{10}H_{21}NH_3^+)$ The layer charge density calculated from the increaments of basal spacings was 0.34 per unit chemical formula. Thermochemical properties of synthesized $C_{10}H_{21}NH_3^+$ montmorillonite were studied by means of DSC, TGA, DTG, Thermal analysis showed two steps of desoption behavior of $C_{10}H_{21}NH_3^+$ ion namely nonyl $(CH_3(CH_2)_8$ decomposition reaction of 40$0^{\circ}C$ and methyleneammonium decomposition reaction of 78$0^{\circ}C$ The activation energy of nonyl decomposition reaction of $C_{10}H_{21}NH_3^+$ -montmorillonite respectively.

  • PDF

A Study on Bubble Behavior Generated by an Air-driven Ejector for ABB (Air Bubble Barrier) (II): Comparison of Bubble Behavior with and without Ejector (공기구동 이젝터를 이용한 ABB (Air Bubble Barrier)의 기포거동 특성 연구 (II): 기포거동 특성의 비교 분석)

  • Seo, Hyunduk;Aliyu, Aliyu Musa;Kim, Hyogeum;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.59-67
    • /
    • 2017
  • To verify floatability of ABB (Air bubble barrier), we compared bubble swarm behavior with and without the air-driven ejector. Experiment was conducted using the fabricated air-driven ejector with 5 mm nozzle on the bottom of 1 m3 water tank. Reynolds number of air in the nozzle was ranged 1766-13248. We analyzed data with statistical method using image processing, particle mage velocimetry (PIV) and proper orthogonal decomposition (POD) analysis. As a result of POD analysis, there was no significant eigenmode in bubbly flow generated from the ejector. It means that more complex turbulent flows were formed by the ejector, thereby (1) making bubbles finer, (2) promoting three-dimensional energy transfer between bubble and water, and (3) making evenly distributed velocity profile of water. It is concluded that the air-driven ejector could enhance the performance of ABB.

Synthesis of $\beta$-Alumina By Oxalate Coprecipitation Method and Its Crystallization Behavior (Oxalate 공침법에 의한 $\beta$-Alumina 합성과 결정화 거동)

  • 박용민;양유철;김형욱;박성수;손영국
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.455-461
    • /
    • 1995
  • To investigate the synthesis of $\beta$-Al2O3 and its crystallization behavior by oxalate coprecipitation method, the optimum pH range for oxalate coprecipitates has been theoretically calculated from the solubility products and the equilibrium constans of each metal ionic species and their solubility diagram wa obtained. The optimum pH range for oxalate coprecipitates at room temperature was estimated as <4. In experiment, we found that the optimum condition for oxalate coprecipitates was pH<1, which was not doped with pH controller. The Na+ ions were easily exchanged for the NH4+ ions of NH4OH which was used as pH controller, and those NH4+ ions were supposed to affect the crystallization behavior of $\beta$-Al2O3. The thermal decomposition of all complexes was almost complete below 40$0^{\circ}C$. The primary product of the decomposition process was m-Al2O3, which transformed to $\beta$"- or $\beta$-Al2O3 at temperature higher than 100$0^{\circ}C$. We found that the powder prepared at 120$0^{\circ}C$ had only $\beta$"- and $\beta$-Al2O3.EX>-Al2O3.

  • PDF

Preparations of Nano-scale Mullite Powder from Solution Combustion Synthesis (용액연소합성에 의한 나노크기 물라이트 분말의 제조)

  • Lee, Sang-Jin;Yun, Jon-Do;Gwon, Hyeok-Bo;Jeon, Byeong-Se
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.797-801
    • /
    • 2001
  • In this study, the solution combustion method was employed to synthesize stoichiometric mullite, and hence the attrition process was employed to prepare ultrafine mullite particles with nano size. The thermal decomposition behavior and partial pressure of equilibrium species of both oxidizer and fuel were considered during solution combustion process. The synthesized product was mullite phase with 40 nm crystalline size, and the alumina contents of the product by TEM/EDS quantity analysis was 3.12$\pm$04 mole. The result showed that the synthesized mullite was almost close to the it's stoichiometric composition. For attrition process, the dispersion behavior of the mullite suspension was controlled and was comminuted with the condition of 800 rpm for 4 hours using 0.3 mm zirconia ball media. As a result of comminution, the mean particle size was 80 nm.

  • PDF

Seismic response analysis of embankment dams under decomposed earthquakes

  • Nasiri, Fatemeh;Javdanian, Hamed;Heidari, Ali
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.35-51
    • /
    • 2020
  • In this study, the seismic response analysis of embankment dams was investigated through numerical modeling. The seismic behavior of dams under main earthquake records and wavelet-based records were studied. Earthquake records were decomposed using de-noising method (DNM) and down-sampling method (DSM) up to five levels. In decomposition process, low and high frequencies of the main earthquake record were separated into two signals. Acceleration response, spectral acceleration, and Fourier amplitude spectrum at the crest of embankment dams under different decomposition levels were evaluated. The seismic behavior under main and decomposed earthquake records was compared. The results indicate an acceptable agreement between the seismic responses of embankment dams under wavelet-based decomposed records and main earthquake motions. Dynamic analyses show that the DNM-based decomposed earthquake records have a better performance compared to DSM-based records. DNM-based records up to level 4 and DSM-based records up to level 2 have a high accuracy in assessment of seismic behavior of embankment dams. The periods corresponding to the maximum values of acceleration spectra and the frequencies corresponding to the maximum values of Fourier amplitude spectra of embankment dam crest under main and decomposed records are in good agreement. The results demonstrate that the main earthquake records can be replaced by wavelet-based decomposed records in seismic analysis of embankment dams.

Thermal Decomposition Characteristics of Azo compounds (아조(Azo)화합물 열분해특성)

  • Kim, Kwan-Eung
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.39-44
    • /
    • 2002
  • This study was investigated the thermal decomposition characteristics of azo type sponge blowing agent azodicarbonamide(ADCA) using differential scanning calorimeter(DSC). The experimental results showed that the exothermic onset $temperatures(T_{o})$ for ADCA were about $201{\sim}206^{\circ}C$ and evolution heats(Q) were about $144{\sim}150cal/g$. The exothermic onset $temperatures(T_{o})$, exothermic maximum $temperature(T_{m})$ and exothermic final $temperature(T_{f})$ were decreased by decreasing particle size of ADCA and evolution heats(Q) were increased with it. $T_{o}$ and Q for $6.1{\sim}7.2{\mu}m$ ADCA were increased by increasing heating rate at constant sample weight and activation energy was about 37.29kcal/mol. A positive gas pressure was employed in the elucidation of the decomposition behavior of ADCA because it sublimes during linear heating at atmospheric pressure. $T_{o}$ and Q of ADCA tended to increase with a pressure in air or nitrogen. In the case of azo dye, experimental results showed that $T_{o}$ were about $280{\sim}420^{\circ}C$ and Q were about $2{\sim}30cal/g$.

A model for Phase Transformation of Microalloyed Low Carbon Steel Combined with Nb Precipitation Kinetics (Nb 석출 거동을 고려한 저탄소강의 상변태 모델)

  • Kim, D.W.;Cho, H.H.;Park, S.;Kim, S.H.;Kim, M.J.;Lee, K.;Han, H.N.
    • Transactions of Materials Processing
    • /
    • v.26 no.1
    • /
    • pp.48-54
    • /
    • 2017
  • The dissolution and precipitation of Nb, which has been known as strong carbide-forming element, play a key role in controlling phase transformation kinetics of microalloyed steels. In this study, we analyzed both numerically and experimentally the precipitation behavior of Nb-microalloyed steel and its effect on the austenite decomposition during cooling. Nb precipitation in austenite matrix could be predicted by the thermo-kinetic software MatCalc, in which interfacial energy between precipitate and matrix is calculated. The simulated precipitation kinetics fairly well agrees with the experimental observations by TEM. Austenite decomposition, which is strongly affected by Nb precipitation during cooling, was measured by dilatometry and was modeled on the basis of a Johnson-Mehl-Avrami-Kolmorgorov(JMAK) equation. It was confirmed that the dissolved Nb delays the austenite decomposition, whereas, the precipitated Nb accelerates phase transformation during the austenite decomposition.

Fabrication of Lotus Nickel Through Thermal Decomposition Method of Compounds under Ar Gas Atmosphere

  • Kim, Sang-Youl;Hur, Bo-Young;Nakajima, Hideo
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.270-275
    • /
    • 2009
  • Lotus-type porous nickel with cylindrical pores was fabricated by unidirectional solidification under an Ar gas atmosphere using the thermal decomposition method of the compounds such as sodium hydroxide, calcium hydroxide, calcium carbonate, and titanium hydride. The decomposed gas does form the pores in liquid nickel, and then, the pores become the cylindrical pores during unidirectional solidification. The decomposed particles from the compounds do play a rule on nucleation sites of the pores. The behavior of pore growth was controlled by atmosphere pressure, which can be explained by Boyle's law. The porosity and pore size decreased with increasing Ar gas pressure when the pores contain hydrogen gas decomposed from calcium and sodium hydroxide and titanium hydride, ; however it they did not change when the pores contain containing carbon dioxide decomposed from calcium carbonate. These results indicate that nickel does not have the solubility of carbon dioxide. Lotus-type porous metals can be easily fabricated by the thermal decomposition method, which is superior to the conventional fabrication method used to pressurized gas atmospheres.