• Title/Summary/Keyword: deck design

Search Result 640, Processing Time 0.026 seconds

Design Program of Deck Plate Slab System with Non-welding Truss Type Reinforced Bar (철근트러스 압접 데크플레이트 바닥 구조의 설계 프로그램)

  • Yoon, Myung-Ho;Oh, Sang-Hoon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.8 no.1
    • /
    • pp.57-64
    • /
    • 2008
  • There are many problems in present truss-deck slab system for example welding defect, segregation, water leakage, rust and tarnish etc. These problems may be caused by spot welding thin galvanized steel plate and lattice bar. The TOX Joining Systems is to join metal sheets of different material and thickness with and without coating or painting without adding heat or a joining part. Newly developed TOX-deck slab system using non-welding joint is free from above mentioned problems. The objects of this study are suggestion of design strength of TOX joint by experimental and statistical analyses and development of window based program to design the TOX-deck slab system.

  • PDF

Experimental Study on the Cracking Loads of LB-DECKs with Varied Cross-Section Details (단면 상세가 변화된 LB-DECK의 균열하중에 대한 실험적 연구)

  • Youn, Seok-Goo;Cho, Gyu-Dae
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.657-665
    • /
    • 2011
  • LB-DECK, a precast concrete panel type, is a permanent concrete deck form used as a formwork for cast-in-place concrete pouring at bridge construction site. LB-DECK consists of 60 mm thick concrete slab and 125 mm height Lattice-girders partly embedded in the concrete slab. These decks have been applied to the bridges, which girder spacings are short enough to resist longitudinal cracking caused by construction loads. This paper presents experimental research work conducted to evaluate the cracking load of LB-DECKs designed for long span bridge decks. Twenty four non-composite beams and four composite beams are fabricated considering three design variables of thickness of concrete slab, height of lattice-girder, and diameter of top-bar. Static loads controlled by displacements are applied to test beams to obtain cracking and ultimate loads. Vertical displacements at the center of beams, strains of top-bar, crack propagation in concrete slab, and final failure modes are carefully monitored. The obtained cracking loads are compared to the analytical results obtained by elastic analyses. Long-term analyses using age-adjusted effective modulus method (AEMM) are also conducted to investigate the effects of concrete shrinkage on the cracking loads. Based on the test results, the tensile strength and the design details of LB-DECKs are discussed to prevent longitudinal cracking of long span bridge decks.

Optimum Cam Profile Design of VTR Deck Using the Response Stuface Analysis (반응표면분석법을 이용한 VTR Deck 캠의 최적형상 설계)

  • Han, Hyeong-Seok;An, Hyeong-Jin;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.788-795
    • /
    • 1996
  • In this paper, and optimum profile of a cam being used in a VTR Deck mechanism is designed by the response surface analysis. The objective function of the design is to reduce driving torque of the pinch roller system that is used to compress video tape to the capstan motor axia. The pinch roller system that will be designed is modeled using the general purpopse mechanism analysis program DADS. The computer model is compared with the physical system for reliability. A model function to represent relationship between design variables and the objective function is estimated by the response surface analysis. Once the model function is reliably estimated the optimal design is carried out using the model function and each design variable's boundaries. To verify improvement of the pinch roller system, a prototype for the pinch rooler system is made and tested. From the test result, an optimum cam profile to resuce driving torque of the pinch roller system is verified.

Weight Reduction Design for a JIB of Deck Crane for Shipment (선박용 갑판크레인의 지브의 경량화설계)

  • Han, Dong-Seop;Lee, Moon-Jae;Han, Geun-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.396-400
    • /
    • 2009
  • The demand of JIB crane to handle a container or a bulk in a vessel is increasingly because of the growth of the scale of trade through the sea. This deck crane such as JIB crane is required the weight reduction design because it is installed in the deck of a vessel due to the environment regulation. In this study first we carry out the structural analysis of JIB with respect to the luffing angle of it to calculate the maximum equivalent stress of JIB, and next the optimum design for the weight reduction design of JIB. The thickness in a cross section of JIB is adopted as the design variable, the weight of JIB as the objective function, and the von mises stress as the constraint condition for the optimum design of JIB using the ANSYS 10.0.

Crack width control of precast deck loop joints for continuous steel-concrete composite girder bridges

  • Shim, Changsu;Lee, Chidong
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.21-34
    • /
    • 2020
  • Precast deck joints have larger crack width than cast-in-place concrete decks. The initial crack typically occurs at the maximum moment but cracks on precast joints are significant and lead to failure of the deck. The present crack equation is applied to cast-in-place decks, and requires correction to calculate the crack width of precast deck joints. This research aims to study the crack width correction equation of precast decks by performing static tests using high strength and normal strength concrete. Based on experimental results, the bending strength of the structural connections of the current precast deck is satisfied. However it is not suitable to calculate and control the crack width of precast loop connections using the current design equation. A crack width calculation equation is proposed for crack control of precast deck loop joints. Also included in this paper are recommendations to improve the crack control of loop connections.

The Strength Comparisons between Double deck Car body Structures with Al Extruded Panels and SUS (Al 압출재 및 SUS 2층열차 차체의 강도해석 비교 검토)

  • 황원주;김형진;강부병;허현무
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.801-806
    • /
    • 2002
  • The operation of double deck train have increased in many countries such as Japan france, and the Netherlands as efficient, safe and convenient alternative transportation systems. Because of continuous concentration of population into Seoul metropolitan and serious traffic jam, the number of passengers using the commuter train have been increased rapidly. Considering these situations, we can find one of the solutions for heavy traffic problems through double deck trains. Stainless steel, and aluminum extruded panel are used to reduce the weight of double deck train. In this paper we compare the results of structural analysis of the double deck car body structures with Al extruded panels and stainless steel. We hope the results of this study may be used as basic guidelines in designing double deck trains in the future.

  • PDF

Effects of Pavement Stiffness on the Structural Behavior of Orthotropic Steel Plate Deck (포장체의 강성이 강상판의 거동에 미치는 영향)

  • 이환우;박순호;이동준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.385-392
    • /
    • 2001
  • The stiffness of pavement is scarcely considered in structural analysis of the superstructure bridge. It will be reasonable in the case of asphalt concrete pavement over concrete deck plate because stiffness of the pavement compared with concrete deck plate can be ignored. Additionally, it is considered correct to do a design with a safety. However, various pavement materials which have even value reaching to the elastic modulus of concrete are applied to the orthotropic steel deck plate which has a relatively less stiffness comparing with the concrete deck plate. In this paper, the steel plate deck of the bridge of real project was modeled considering the pavement stiffness for the FEM analysis and the linear elastic analysis was performed. It was assumed to be perfectly bonded between the steel plate deck and the pavement and the temperature effect was ignored. It was analyzed on the vertical deflection of steel deck plate influencing to the serviceability of pavement and the bending stress of steel deck plate related to the fatigue life. As a result, It was indicated that the structural behavior of the orthotropic steel deck plate could be affected by the stiffness of pavement in some cases.

  • PDF

Experimental studies on the behaviour of headed shear studs for composite beams in fire

  • Lim, Ohk Kun;Choi, Sengkwan;Kang, Sungwook;Kwon, Minjae;Choi, J. Yoon
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.743-752
    • /
    • 2019
  • Steel and concrete composite structures are commonly applied in multi-story buildings as they maximise the material strength through composite action. Despite the popularity of employing a trapezoidal deck slab, limited experimental data are available under elevated temperatures. The behaviour of the headed shear stud embedded in a transverse trapezoidal deck and solid slab was investigated at both ambient and fire conditions. Twelve push-out tests were conducted according to the ISO 834 standard fire utilising a customised electric furnace. A stud shearing failure was observed in the solid slab specimen, whereas the failure mode was changed from a concrete-dominated failure to the stud shearing in the transverse deck specimen with an increase in temperature. Comparisons between the experimental observations and design requirements are presented. The Eurocode design guidance on the transverse deck slab gives a highly conservative estimate for shear resistance. A new design formula was proposed to determine the capacity of the shear connection regardless of the slab type when the stud shearing occurs at high temperatures.

Optimum design of steel floor system: effect of floor division number, deck thickness and castellated beams

  • Kaveh, A.;Ghafari, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.933-950
    • /
    • 2016
  • Decks, interior beams, edge beams and girders are the parts of a steel floor system. If the deck is optimized without considering beam optimization, finding best result is simple. However, a deck with higher cost may increase the composite action of the beams and decrease the beam cost reducing the total cost. Also different number of floor divisions can improve the total floor cost. Increasing beam capacity by using castellated beams is other efficient method to save the costs. In this study, floor optimization is performed and these three issues are discussed. Floor division number and deck sections are some of the variables. Also for each beam, profile section of the beam, beam cutting depth, cutting angle, spacing between holes and number of filled holes at the ends of castellated beams are other variables. Constraints include the application of stress, stability, deflection and vibration limitations according to the load and resistance factor (LRFD) design. Objective function is the total cost of the floor consisting of the steel profile cost, cutting and welding cost, concrete cost, steel deck cost, shear stud cost and construction costs. Optimization is performed by enhanced colliding body optimization (ECBO), Results show that using castellated beams, selecting a deck with higher price and considering different number of floor divisions can decrease the total cost of the floor.

A Study on Constructability Improvement of LB-DECK Panel (LB-DECK 패널의 시공성 향상에 관한 연구)

  • Cho, Hyun-Chul;Lho, Byeong-Cheol;Cho, Gyu-Dae;Choi, Kyu-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.122-128
    • /
    • 2009
  • This study is to improve constructability of LB-DECK construction in site such as inconvenience of main and distribution bars in arrangements LB-DECK Panel which is work is applied to many bridges these days as a permanent formwork. So, the constructability is improved by changing the method of allocation of main reinforcing bar and distribution bar which is reviewed for improving efficiency of design and construction process among the suggested methods. The crack shapes, deflections, and strains under static load of the improvement of LB-DECK Panel are compared and analyzed to former LB-DECK Panel. As a result, 13% of strength compared to before the improvement of LB-DECK Panel, and 10% of strength is increased in the case of slab.