• Title/Summary/Keyword: deck design

Search Result 640, Processing Time 0.022 seconds

Governing Design Factors of GFRP-Reinforced Concrete Bridge Deck (GFRP 근 보강 콘크리트 교량 바닥판의 설계지배인자)

  • Cho, Jeong-Rae;Park, Young Hwan;Park, Sung Yong;Cho, Kunhee;Kim, Sung Tae
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.70-77
    • /
    • 2015
  • In this study, the governing design factors of GFRP-reinforced concrete bridge deck are analyzed for typical bridges in Korea. The adopted bridge deck is a cast-in-situ concrete bridge deck for the prestressed concrete girder bridge with dimensions of 240 mm thickness and 2.75 m span length from center-to-center of supporting girders. The selected design variables are the diameters of GFRP rebar, spacings of GFRP rebars and concrete cover thicknesses, Considering the absence of the specification relating GFRP rebar in Korea, AASHTO specification is used to design the GFRP-reinforced concrete bridge deck. The GFRP-reinforced concrete bridge deck is proved to be governed by the criteria about serviceability, especially maximum crack width, while steel reinforced concrete bridge deck is governed by the criteria on ultimate limit state. In addition, GFRP rebars with diameter of 16 mm ~ 19 mm should be used for the main transverse direction of decks to assure appropriate rebar spacings.

A Study on Structural Performance of HB-DECK and Cast in Place Concrete Slab (HB-DECK와 현장타설 콘크리트 슬래브의 구조성능에 관한 연구)

  • Lee, Wang-Su;Lho, Byeong-Cheol;Cho, Hyun-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.59-67
    • /
    • 2018
  • The interference between the lattice bar of existing LB-DECK and the bars placed at site degrades the constructability, which is pointed as a problem. HB-DECK simplified the shape of lattice bar, and converted the direction of main rebar direction to the distributing bar direction, and installed the rib on the underside of HB-DECK to increase the stiffness. The purpose of this study is to verify the structural performance of HB-DECK and cast in place concrete slab. The static load test was conducted to verify the structural performance according to Korean highway bridge design code(2015) and composite behavior of HB-DECK with Cast in Place Concrete Slab. Three-dimensional finite element analysis was carried by MIDAS FEA, and analyzed to compare the result of analysis and experiment. At a result, composite behavior was examined between HB-DECK and cast in place concrete slab, and structural performance satisfied Korean highway bridge design code(2015).

Analysis of PSC Box Girder Railway Bridge and Design of its Diaphragm using Sturt-and-Tie Model (PSC 박스 거더 철도교량의 해석 및 스트럿-타이 모델에 의한 격벽부 설계)

  • Song, Ha-Won;Kim, Hyoung-Woon;Kim, Young-Hoon;Byun, Keun-Joo
    • Journal of the Korean Society for Railway
    • /
    • v.1 no.1 s.1
    • /
    • pp.30-39
    • /
    • 1998
  • The functions of diaphragms at abutments and piers of PSC box girder railway bridge are to transfer forces from the superstructure onto bearings or columns and to stiffen the superstructure cross-section against in -plane deformation. Due to stress disturbance at diaphragm, the design for the diaphragm using conventional design method is relatively irrational than those for other structural members. And, due to contribution to boundary condition of deck slab by the diaphragm, the behavior of deck slab near the diaphragm is different from that of the deck slab obtained from two dimensional analysis of the bridge, which is basis for the design of deck slab. In this paper, three dimensional behavior of deck slab near the diaphragm of prestressed concrete (PSC) box girder railway bridge constructed by the precast span method are analyzed by using three dimensional finite element modeling and using the strut-and-tie model design of the diaphragm are presented. The modeling techniques used in this paper can be applied effectively to examine the causes of cracks at deck slab near diaphragm and to design diaphragm rationally.

  • PDF

Structural Analysis and Optimization of a Pedestal for Deck Crane (데크 크레인용 페데스탈의 구조해석 및 최적화)

  • Choi, Dong-Hwan;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.95-100
    • /
    • 2012
  • A deck crane is installed on the deck of a ship when there is no adequate facility for loading and unloading in dock or harbor. Deck cranes in Korea have been imported from abroad, and the import-substitution effect will arise if its production can be localized. Now, it is required to suggest the structural design of a deck crane that meet the domestic criterion, considering loading condition. In this study, the structural analysis of a pedestal in the deck crane was peformed by finite element method to investigate the strength requirement. In addition, the structural design of a pedestal was suggested by using ANSYS and VisualDOC. The optimized structure of a pedestal was determined, considering lightweight design.

Minimum Thickness of Long-Span RC Deck Slabs for 2-girder Bridges Designed by 80 MPa Concrete (80 MPa급 고강도 콘크리트를 활용한 2거더교 RC 장지간 바닥판의 최소두께)

  • Bae, Jae-Hyun;Yoo, Dong-Min;Hwang, Hoon-Hee;Kim, Sung-Tae
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.97-103
    • /
    • 2014
  • To ensure durability and light weight of bridges, high-strength concrete is required for long-span deck slabs. Such a technology eventually extends the life of bridges and improves the economic efficiency. The results of this study suggests a formula for calculating the minimum thickness of long-span deck slabs built with high strength concrete. The minimum thickness is proposed based on the limit states indicated in the CEB-FIP Model Code and the Korean Highway Bridge Design Code(limit state design). The design compressive strength of concrete used for the study is 80MPa. Moreover, the required thickness for satisfying the flexural capacity and limiting deflection is estimated considering the limit state load combination. The formula for minimum thickness of deck slabs is proposed considering the ultimate limit state(ULS) and the serviceability limit state(SLS) of bridges, and by comparing the Korean Highway Bridge Design Code and similar previous studies. According to the research finding, the minimum thickness of long-span deck slab is more influenced by deflection limit than flexural capacity.

Minimum Thickness of Long Span RC Deck Slabs for Composite 2-girder Bridges Designed by KL-510 Load Model (KL-510 하중모형을 적용한 강합성 2거더교 RC 장지간 바닥판의 최소두께)

  • Park, Woo-Jin;Hwang, Hoon-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.72-78
    • /
    • 2014
  • The minimum thickness of long-span deck slab is proposed by checking the limit state according to the Korean highway bridge design code(limit state design). Both minimizing thickness and ensuring safety of deck slab are important design factors to increase a competitive price of the long span deck slabs. The required thicknesses for satisfying flexural capacity, preventing punching shear failure and limiting deflection were calculated by considering KL-510 load model which has increased total load compared to DB 24 from 432 kN to 510 kN. The results of the required thickness for various limit states were compared to propose the minimum thickness as a function of span length of deck slabs. The proposed minimum thickness is influenced by satisfying flexural capacity and limiting deflection. It turns out to be similar compared to the results of the previous study by ultimate strength design method even if the live load model was increased in total weights.

An Experimental Study on Punching Shear of Simplified Composite Deck (초간편 강합성 바닥판의 펀칭 전단에 관한 실험적 연구)

  • Yoon, Ki-Yong;Lee, Sung-Yol;Yi, Gyu-Sei;Kim, Sang-Seup
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.23-30
    • /
    • 2009
  • According to Korea Highway Bridge Design Code the bridge deck is designed by the strength design method and is regarded as a beam possessing the unit width based on the bending theory. By many researches it is revealed that the existing bridge deck is failed by punching shear. For evaluating the ultimate capacity of bridge deck it is important to estimate the behavior of bridge deck under the punching shear. For the punching strength it is difficult that the existing research results are applied to the simplified composite deck. In this study for comparing characteristics on punching shear the punching shear tests on simplified composite deck and RC deck are performed. The punching shear strength of simplified composite deck is compared with several bridge design codes.

Weight Minimization of a Double-Deck Train Carbody using Response Surface Method (반응표면 모델을 이용한 2층열차 차체의 경량화 설계)

  • Hwang Won-Ju;Kim Hyeong-Jin
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.453-458
    • /
    • 2005
  • Weight minimization of double-deck train carbody is imperative to reduce cost and extend life-time of train. It is required to decide 36 thickness of aluminum extruded panels. However, the design variables are two many to tract. moreover, one execution of structural analysis of double-deck carbody is time-consuming. Therefore, we adopt approximation technique to save computational cost of optimization process. Response surface model is used to apporximate static response of double-deck carbody. To obtain plausible response surface model, orthogonal array is empolyed as design of experiment(DOE). Design improvement by approximate model-based optimization is described. Accuracy and efficiency of optimization by using response surface model are discussed.

  • PDF

Parameter Study for the Application of Ultra Thin Polymer Concrete Pavement (초박층 폴리머콘크리트 포장적용을 위한 매개변수 해석)

  • Yoon, Sang il;Jang, Yong joon;Choi, Jinwoong;Hong, Sungnam;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.46-54
    • /
    • 2015
  • Base on Korean design code, previous design code had not considered the effect of pavement on the orthotropic steel deck, however recent design code (Limit State Design Method, 2012) allowed to consider the effect of pavement on the orthotropic steel deck, and efforts to apply the stiffness of pavement to the deck continue. Meanwhile, research on the effect of ultra thin bridge deck overlay on the orthotropic steel deck is inadequate, previous study was limited in about fatigue stress and performance between pavement layer and the orthotropic steel deck. In this study, according to changing of pavement layer stiffness application, pavement materials, pavement thickness and steel deck thickness, analysis of deflection. In addition to base on this result, consider effectiveness of ultra-thin pavement stiffness application on the orthotropic steel deck.

Computation of the Bow Deck Design Pressure against the Green Water Impact (Green Water 충격에 대비한 선수갑판 설계압력의 산출)

  • Kim, Yong Jig;Shin, Ki-Seok;Lee, Seung-Chul;Ha, Youngrok;Hong, Sa Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.343-351
    • /
    • 2019
  • Green water impact may sometimes cause some structure damages on ship's bow deck. Prediction of proper design pressure against the green water impact is an essential task to prevent the possible damages on bow deck. This paper presents a computational method of the bow deck's design pressure against the green water impact. Large heave and pitch motions of ship are calculated by the time domain nonlinear strip method. Green water flow and pressure on bow deck are simulated by the predictor-corrector second kind upstream finite difference method. This green water simulation method is based on the shallow water wave equations expanded for moving bottom conditions. For various kind of ships such as container ship, VLCC, oil tanker and bulk carrier, the green water design pressures on bow deck are computed and discussed. Also, the obtained results of design pressure on bow deck are compared with those of the classification society rules and discussed.