• Title/Summary/Keyword: deck design

Search Result 644, Processing Time 0.028 seconds

A Study on Structural Behavior of Composite Deck Plate using a Pre-assembled Re-bar Truss (철근 선조립형 복합 데크플레이트의 하부근 선경축소에 따른 구조적 거동 평가)

  • Yoo, Byung-Uk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.129-138
    • /
    • 2006
  • Composite deck plate using a pre-assembled re-bar truss for slab with corrugated zinc galvanized sheet iron at manufactory, is given the improvement on design, manufacture, and performance for construction work of cast-in-place reinforced concrete slab by enabling to cast concrete directly without the form work. There are two methods in analyzing composite deck : Simplified 2D analysis and 3D analysis. Although simplified 2D analysis is being used up to date, the use of 3D analysis, allowing for the vierendeel behavior of composite deck by real configuration correlating to bar reducing, is demanded. To compare the simplified 2D analysis applied to allowable stress design with 3D analysis applied to limit state design, 8 specimen are manufactured. Main variables include the depth of slab, the length of span, the diameter of bottom bar and lattice bar, and the presence of corrugated zinc galvanized sheet iron. The comparison from the experimental result and analytical result indicates that applying of simplified 2D analysis is possible for the use of D10 with bottom bar. However, it is more reasonable to apply 3D analysis which allows to indicate vierendeel behavior considered the real configuration.

Fatigue behavior of hybrid GFRP-concrete bridge decks under sagging moment

  • Xin, Haohui;Liu, Yuqing;He, Jun;Fan, Haifeng;Zhang, Youyou
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.925-946
    • /
    • 2015
  • This paper presents a new cost-effective hybrid GFRP-Concrete deck system that the GFRP panel serves as both tensile reinforcement and stay-in-place form. In order to understand the fatigue behavior of such hybrid deck, fatigue test on a full-scale specimen under sagging moment was conducted, and a series of static tests were also carried out after certain repeated loading cycles. The fatigue test results indicated that such hybrid deck has a good fatigue performance even after 3.1 million repeated loading cycles. A three-dimensional finite element model of the hybrid deck was established based on experimental work. The results from finite element analyses are in good agreement with those from the tests. In addition, flexural fatigue analysis considering the reduction in flexural stiffness and modulus under cyclic loading was carried out. The predicted flexural strength agreed well with the analytical strength from finite element simulation, and the calculated fatigue failure cycle was consistent with the result based on related S-N curve and finite element analyses. However, the flexural fatigue analytical results tended to be conservative compared to the tested results in safety side. The presented overall investigation may provide reference for the design and construction of such hybrid deck system.

Evaluation of Structural Performance of RC Deck Slabs by High-Strength Concrete (고강도 콘크리트를 적용한 RC 바닥판의 정적 성능 평가)

  • Bae, Jae-Hyun;Hwang, Hoon-Hee;Park, Sung-Yong;Joh, Keun-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.89-95
    • /
    • 2016
  • Lately, the high-strength concrete is often used to increase the lifespan of bridges. The benefits of using the high-strength concrete are that it increases the durability and strength. On the contrary, it reduces the cross-section of the bridges. This study conducted structural performance tests of the bridge deck slabs applying high-strength concrete. As result of the tests, specimens of bridge deck slabs were destroyed through punching shear. Moreover, the tests exposed that the high-strength concrete bridge deck slabs satisfy the flexural strength and the punching shear strength at ultimate limit state(ULS). Also, limiting deflection of the concrete fulfilled serviceability limit state(SLS) criteria. These results indicated that the bridge deck slabs designed by high-strength concrete were enough to secure the safety factor despite of its low thickness.

Fatigue Safety Evaluation of the Half-Depth Precast Deck with RC Rib Panel (리브 형상을 갖는 반단면 프리캐스트 바닥판의 피로 안전성 평가)

  • Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.103-110
    • /
    • 2019
  • In order to reduce the accidents occurring at construction sites, it is necessary to approach with harmonious measures considering various aspects such as systems, training, facilities, and protection equipments. Suggestion of safe construction method can be a good alternative. In the previous study, the half-depth precast deck with RC rib panel was proposed as an alternative method for safe bridge deck construction, and the performance required by the design code was verified through a four-point bending test. But the actual bridge deck is subjected to the repetitive action of the wheel load rather than the bending condition due to the four-point load. In this study, fatigue test was performed by repeating the wheel load $2{\times}10^6$ cycles to verify the safety of the half-depth precast deck with RC rib panel under actual conditions. As a result, fatigue effect due to repetition of wheel load was not significant in terms of serviceability such as crack width and deflection. In the residual strength test conducted after the fatigue test, the half-depth precast deck with RC rib panel failed by punching shear which is typical failure mode of bridge decks and the residual strength was similar to the punching strength of the RC and PSC bridge decks in spite of the fatigue effects.

Analytical Method for Bending Moment of Slab-on-Steel-Girder Bridge (강판형교 바닥판 모멘트의 해석기법)

  • Park, Nam Hoi;Choi, Jin Yu;Yu, Chul Soo;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.17-28
    • /
    • 2000
  • The current specifications for bridge decks requires the same amount of upper and lower reinforcement mats. There have been many empirical activities that the partial elimination of upper reinforcing bars was not caused the structural integrity of a deck. A simplified method is derived based on thin plate theory for three and four-girder-span bridge decks. A simplified method for bridge deck considering the effect of girder deflection is proposed based on a closed-form solution that shows good agreement with the results of finite element models. In this research, a new design approach for deck slabs is proposed based on the simplified method. The negative bending moments in a deck can be evaluated with the simplified method based on the position of a wheel load, the aspect ratio and relative stiffness and the span length. This new approach can lead to a significant reduction of the quantity of the top reinforcing steel bars in a deck. Reducing the quantify of the top reinforcement not only reduces the construction costs for bridge decks, but also reduces the corrosion of reinforcement to a minimum.

  • PDF

Estimation of Live Load Moment for Concrete Unfilled Steel Grid Deck Using Main Bearing Bar Distribution Factor (하중분배 계수를 적용한 비충전 강합성 바닥판 활하중 모멘트 산정)

  • Park, Young hoon;Kim, Sung Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1667-1676
    • /
    • 2014
  • Because of the different flexural rigidity between longitudinal and transverse direction, orthotropic plate theory may be suitable for describing the behavior of composite deck. The ratio of flexural rigidity between longitudinal and transverse direction affects the live load moment. Because of the ratio of flexural rigidity of concrete unfilled steel grid deck has a direct relationship with main bearing bar spacing, it is concluded that the study for the distribution factor which is effected by main bearing bar spacing and aspect ratio is needed. In this study, evaluate the live load moment of concrete unfilled steel grid deck using the AASHTO LRFD Bridge Design Specification and presents the distribution coefficient equation for concrete unfilled steel grid deck.

A study on Specification for propulsion system design of double deck trains (2층 열차에 적합한 추진시스템 사양 연구)

  • Baik kwangsun;Kim Myungyoung;Kim Jin-whan
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1346-1348
    • /
    • 2004
  • In this paper, Traction system and electric devices of double deck is designed to examine technical reasonableness for driving on the ground and underground. Other countries's double decks is considered. For designing the electric devices, two accelerations are considered and design criterion are given.

  • PDF

Basic Research on Structural Optimum Design of G/T 250ton Class Double-ended Car-Ferry Ship (G/T 250톤급 양방향 차도선의 차량갑판 구조 최적설계에 관한 기초연구)

  • Kang, Byoung-Mo;Oh, Young-Cheol;Seo, Kwang-Cheol;Bae, Dong-Gyun;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.729-736
    • /
    • 2015
  • In this paper, It was performed to optimize for the deck's structural design of a double ended car ferry ship respect to Goal-Driven Optimization (GDO). It was examined for the strength and deformation of the deck and determined to save economic cost the optimal point. The deck thickness based on the Design of Experiments (DOE) and response surface method was increased to 110%. and can improve the deck's strength and stiffness. By performing the regression analysis respect to the result, we propose the optimal regression model formula as a third degree polynomial regression models. The coefficient of determination $R^2$ was about 0.98 and reliability could be obtained.

A Study for The Optimal Detail on Intersectin of Longitudinal-Transversal Rib in Orthotropic Steel Deck Bridge, Bulkhead Plate Reinforced. (벌크헤드 플레이트로 보강된 강바닥판교의 종리브-횡리브 교차연결부의 최적상세 연구)

  • 공병승;윤성운
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.177-184
    • /
    • 2004
  • Orthotropic steel deck bridge has much advantages such as the light deadweight, so the construction of orthotropic steel deck is profitable for the long-span bridges Although the system has a lot of merits, it happens some damages by the traffic density and the fatigue cracks of welding. The cross-connection of longitudinal rib and transversal rib is one of the weakest at the fatigue. The secondary stresses which are from the out-plane deformation of transversal rib and the torsion of longitudinal rib make the topical stress concentration phenomenon. The Bulkhead Plate for prevention of this stress concentration phenomenon was applied by changing the orthotropic steel deck of Williamsburg bridge in USA. But, it is principle that a Bulkhead Plate is not established in the domestic design standard. Therefore, it is estimated that the study for installation of Bulkhead Plate is needed. This study with considering these circumstances proves efficiency of Bulkhead Plate and will be presented optimal design details through finite element analysis according to change the geometrical of Bulkhead Plate and the cross-connection area of longitudinal and transversal rib

  • PDF

A Vibration Isolation Design for Engine Room Opening Deck around Heavy Spare Parts of the Main Engine (Main Engine의 Heavy Spare Parts가 설치된 Engine Room Opening Deck의 방진 설계 사례)

  • Jeon, Yong-Hoon;Lim, Gu-Sub;Jeong, Tae-Seok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.93-96
    • /
    • 2009
  • Foundation structure for the main engine heavy spare parts in the engine room is susceptible to resonance problem due to outfitting weight. In addition the deck floor has a large opening for the main engine installation and maintenance, which further weakens the foundation structure. To reinforce the weak structure, two types of approaches have been used; 1) insert an H-pillar below or above the floor and 2) increase the stiffener size. In this paper, the H-pillar approach is used to solve the vibration problem of the foundation structure in the engine room opening area. A commercial program is used to analyze the vibration problem ad to find the location and the size of the H-pillar. Modal test at the quay and on-board vibration measurement during the sea trial have confirmed the validity of inserting an H-pillar below the floor.

  • PDF