• Title/Summary/Keyword: decentralized approach

Search Result 126, Processing Time 0.029 seconds

Design of Optimal Controllers for Spacecraft Formation Flying Based on the Decentralized Approach

  • Bae, Jong-Hee;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.58-66
    • /
    • 2009
  • Formation controller for multiple spacecrafts is designed based on a decentralized approach. The objective of the proposed controller is to make each spacecraft fly to the desired waypoints, while keeping the formation shape of multiple spacecrafts. To design the decentralized formation controller, the output feedback linearization technique using error functions for goal convergence and formation keeping is utilized for spacecraft dynamics. The primary contribution of this paper is to proposed optimal controller for formation flying based on the decentralized approach. To design the optimal controller, eigenvalue assignment technique is used. To verify the effectiveness of the proposed controller, numerical simulations are performed for three-dimensional waypoint-passing missions of multiple spacecrafts.

Decentralized control via sensor network and its theoretical approach to design of an active vibration isolator (센서네트워크를 통한 분산제어와 초정밀 방진기 설계에 관한 이론적 접근)

  • Song B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.519-522
    • /
    • 2005
  • Decentralized Dynamic Surface Control(DDSC) for a class of nonlinear system interconnected via sensor network is presented in this paper. While a centralized design approach of DSC was developed in [1], the decentralized approach to deal with complex large-scale systems is proposed under the assumption that interconnected functions among subsystems are known via sensor network. As shown in [2], the separation principle for DDSC will allow us to design an estimation filter independently. Furthermore, the theoretical results are used to design and simulate an active vibration isolator under the assumption that many embedded sensors are distributed and communicate each other via wireless communication.

  • PDF

Decentralized energy market-based structural control

  • Lynch, Jerome Peter;Law, Kincho H.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.557-572
    • /
    • 2004
  • Control systems are used to limit structural lateral deflections during large external loads such as winds and earthquakes. Most recently, the semi-active control approach has grown in popularity due to inexpensive control devices that consume little power. As a result, recently designed control systems have employed many semi-active control devices for the control of a structure. In the future, it is envisioned that structural control systems will be large-scale systems defined by high actuation and sensor densities. Decentralized control approaches have been used to control large-scale systems that are too complex for a traditional centralized approach, such as linear quadratic regulation (LQR). This paper describes the derivation of energy market-based control (EMBC), a decentralized approach that models the structural control system as a competitive marketplace. The interaction of free-market buyers and sellers result in an optimal allocation of limited control system resources such as control energy. The Kajima-Shizuoka Building and a 20-story benchmark structure are selected as illustrative examples to be used for comparison of the EMBC and centralized LQR approaches.

Optimal and decentralized control of power system frequency (전력계통 주파수의 최적분산제어에 관한 연구)

  • 박영문;이승재;서보혁
    • 전기의세계
    • /
    • v.29 no.10
    • /
    • pp.667-677
    • /
    • 1980
  • A new approach for optimal decentralized load-frequency control in a multi-area interconnected power system is presented, which includes the optimal determination of decentralized load-frequency controller, observer for unmeasurable local states and load disturbances, quadratic estimator for tie-line power flow information transmitted at intervals. The optimal design of the decentralized controller is based on a modified application of the singular perturbation theory, and the decentralized Luenberger obeserver uses techniques of state augmentation for exponential disturbance functions and the representation of tie-line power flow states as non-directly-controlled inputs. The approach presented herein is numerically tested through Elgerd's two-area load-frequency system model, and the results demonstrate remarkable advantages over the conventional ones.

  • PDF

Output-only modal identification approach for time-unsynchronized signals from decentralized wireless sensor network for linear structural systems

  • Park, Jae-Hyung;Kim, Jeong-Tae;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • v.7 no.1
    • /
    • pp.59-82
    • /
    • 2011
  • In this study, an output-only modal identification approach is proposed for decentralized wireless sensor nodes used for linear structural systems. The following approaches are implemented to achieve the objective. Firstly, an output-only modal identification method is selected for decentralized wireless sensor networks. Secondly, the effect of time-unsynchronization is assessed with respect to the accuracy of modal identification analysis. Time-unsynchronized signals are analytically examined to quantify uncertainties and their corresponding errors in modal identification results. Thirdly, a modified approach using complex mode shapes is proposed to reduce the unsynchronization-induced errors in modal identification. In the new way, complex mode shapes are extracted from unsynchronized signals to deal both with modal amplitudes and with phase angles. Finally, the feasibility of the proposed approach is evaluated from numerical and experimental tests by comparing with the performance of existing approach using real mode shapes.

Nonlinear finite element model updating with a decentralized approach

  • Ni, P.H.;Ye, X.W.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.683-692
    • /
    • 2019
  • Traditional damage detection methods for nonlinear structures are often based on simplified models, such as the mass-spring-damper and shear-building models, which are insufficient for predicting the vibration responses of a real structure. Conventional global nonlinear finite element model updating methods are computationally intensive and time consuming. Thus, they cannot be applied to practical structures. A decentralized approach for identifying the nonlinear material parameters is proposed in this study. With this technique, a structure is divided into several small zones on the basis of its structural configuration. The unknown material parameters and measured vibration responses are then divided into several subsets accordingly. The structural parameters of each subset are then updated using the vibration responses of the subset with the Newton-successive-over-relaxation (SOR) method. A reinforced concrete and steel frame structure subjected to earthquake loading is used to verify the effectiveness and accuracy of the proposed method. The parameters in the material constitutive model, such as compressive strength, initial tangent stiffness and yielding stress, are identified accurately and efficiently compared with the global nonlinear model updating approach.

Decentralized H$\infty$Controller Design-reduced order observers approach

  • Jo, Cheol H.;Lee, Sang-Hyek;Seo, Jin H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.52-55
    • /
    • 1996
  • In this paper, we consider the decentralized reduced-order H$_{\infty}$ controller for the general plant. Simplifying method is suggested for the general plant with the decentralized controller structure. When the controller is reconstructed for the original system, the decentralizability of the controller for the transformed system is generally destroyed with the older method. We solve this problem. For the simplified system, the structure of the decentralized controller is suggested..

  • PDF

Overlapping Decentralized Robust EA Control Design for an Active Suspension System of a Full Car Model (전차량의 능동 현가 장치 제어를 위한 중복 분산형 견실 고유구조지정 제어기 설계)

  • 정용하;최재원;김영호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.217-217
    • /
    • 2000
  • A decentralized robust EA(eigensoucture assignment) controller is designed for an active suspension system of a vehicle based on a full car model with 7-degree of freedom. Using overlapping decomposition, the full car model is decentralized by two half car models. For each half car model, a robust eigenstructure assignment controller can be obtained by using optimization approach. The performance of the decentralized robust EA controller is compared with that of a conventional centralized EA controller through computer simulations.

  • PDF

Design of Decentralized State Observer for Large Scale Interconnected System (대규모 연결계의 분산상태관측기 설계)

  • 이기상;장민도
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.2
    • /
    • pp.122-129
    • /
    • 1988
  • A design method of decentralized state observer for large scale interconnected systems is proposed by the use of interconnection rejection approach and interconnection modelling technique. The proposed design method is developed based on the interconnection partitioning. Therefore partitioning conditions are suggested. And the conditions for observer pole assignment and observer parameter determination procedures are described for possible interconnection patterns. The decentralized state observer gives good estimates without any information on the interconnection variables and estimations. In addition, a numerical example is given to explain the design procedures and to show the estimation performance of the decentralized observer.

  • PDF

Decentralized Filters for the Formation Flight

  • Song, Eun-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.19-29
    • /
    • 2002
  • Decentralized filtering for a formation flight instrumentation system by INS/GPS integration is considered in this paper. An elaborate tuning method of the measurement noise covariance is suggested to compensate modeling errors caused by decentralizing the extended Kalman filter. It does not require large data transfer between formation vehicles. Covariance analysis exhibits the superior performance of the proposed approach when compared with the existent decentralized filter and the global filter, which has the target-filter performance.