• Title/Summary/Keyword: decaying heat

Search Result 32, Processing Time 0.024 seconds

Hall Effect on Unsteady Hartmann Flow with Heat Transfer Under Exponential Decaying Pressure Gradient

  • Attia Hazem A.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1302-1308
    • /
    • 2006
  • The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer taking the Hall effect into consideration. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to an exponential decaying pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the ion slip and the uniform suction and injection on both the velocity and temperature distributions is examined.

Hall Effect on Couette Flow with Heat Transfer of a Dusty Conducting Fluid Between Parallel Porous Plates Under Exponential Decaying Pressure Gradient

  • Attia Hazem A.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.569-579
    • /
    • 2006
  • In the present study, the unsteady Couette flow with heat transfer of a dusty viscous incompressible electrically conducting fluid under the influence of an exponential decaying pressure gradient is studied without neglecting the Hall effect. The parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from below while the fluid is acted upon by an external uniform magnetic field is applied perpendicular to the plates. The governing equations are solved numerically using finite differences to yield the velocity and temperature distributions for both the fluid and dust particles.

Hall Effect on Unsteady Couette Flow. with Heat Transfer Under Exponential Decaying Pressure Gradient

  • Attia HazemAIi
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2053-2060
    • /
    • 2005
  • The unsteady Couette flow of an electrically conducting, V1SCOUS, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer taking the Hall effect into consideration. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to an exponential decaying pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the ion slip and the uniform suction and injection on both the velocity and temperature distributions is examined.

Dynamic Behaviors of Oscillating Edge-Flame in Low Strain Rate Counterflow Diffusion Flames (저신장율 대향류확산화염에서 진동불안정성을 갖는 에지화염의 동적거동)

  • Park, June-Sung;Kim, Hyun-Pyo;Park, Jeong;Kim, Jeong-Soo;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.65-72
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified.

  • PDF

Effects of Heat Losses on Edge-flame Instabilities in Low Strain Rate Counterflow Diffusion Flames (저신장율 대향류확산화염에서 에지화염 불안정성에 관한 열손실 효과)

  • Park June-Sung;Hwang Dong-Jin;Kim Jeong-Soo;Keel Sang-In;Kim Tae-Kwon;Park Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.996-1002
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified

Variability of thermal properties for a thermoelastic loaded nanobeam excited by harmonically varying heat

  • Abouelregal, A.E.;Zenkour, A.M.
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.451-460
    • /
    • 2017
  • This work produces a new model of nonlocal thermoelastic nanobeams of temperature-dependent physical properties. A nanobeam is excited by harmonically varying heat and subjected to an exponential decaying time varying load. The analytical solution is obtained by means of Laplace transform method in time domain. Inversions of transformed solutions have been preceded by using calculus of residues. Effects of nonlocal parameter, variability thermal conductivity, varying load and angular frequency of thermal vibration on studied fields of nanobeam are investigated and discussed.

Molecular Dynamics Simulations for Transport Coefficients of Liquid Argon : New Approaches

  • Lee, Song-Hi;Park, Dong-Kue;Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.178-182
    • /
    • 2003
  • The stress and the heat-flux auto-correlation functions in the Green-Kubo formulas for shear viscosity and thermal conductivity have non-decaying long-time tails. This problem can be overcome by improving the statistical accuracy by N (number of particles) times, considering the stress and the heat-flux of the system as properties of each particle. The mean square stress and the heat-flux displacements in the Einstein formulas for shear viscosity and thermal conductivity are non linear functions of time since the quantities in the mean square stress and the heat-flux displacements are not continuous under periodic boundary conditions. An alternative to these quantities is to integrate the stress and the heat-flux with respect to time, but the resulting mean square stress and heat-flux displacements are still not linear versus time. This problem can be also overcome by improving the statistical accuracy. The results for transport coefficients of liquid argon obtained are discussed.

An Experimental Study on Heat Transfer Characteristics with Turbulent Swirling Flow Using Uniform Heat Flux in a Cylindrical Annuli

  • Chang, Tae-Hyun;Lee, Kwon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2042-2052
    • /
    • 2003
  • An experimental study was performed to investigate heat transfer characteristics of turbulent swirling flow in an axisymmetric annuli. The static pressure, the local flow temperature, and the wall temperature with decaying swirl were measured by using tangential inlet conditions and the friction factor and the local Nusselt number were calculated for Re=30000∼70000. The local Nusselt number was compared with that obtained from the Dittus-Boelter equation with swirl and without swirl. The results showed that the swirl enhances the heat transfer at the inlet and the outlet of the test tube.

Molecular Dynamics Simulation Study of the Transport Properties of Liquid Argon: The Green-Kubo Formula Revisited

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1371-1374
    • /
    • 2007
  • The velocity auto-correlation (VAC) function of liquid argon in the Green-Kubo formula decays quickly within 5 ps to give a well-defined diffusion coefficient because the velocity is the property of each individual particle, whereas the stress (SAC) and heat-flux auto-correlation (HFAC) functions for shear viscosity and thermal conductivity have non-decaying, long-time tails because the stress and heat-flux appear as system properties. This problem can be overcome through N (number of particles)-fold improvement in the statistical accuracy, by considering the stress and the heat-flux of the system as properties of each particle and by deriving new Green-Kubo formulas for shear viscosity and thermal conductivity. The results obtained for the transport coefficients of liquid argon obtained are discussed.

An Experimental Study on Swirling Flow with Heat Transfer in the Horizontal Circular Annuli

  • Chang Tae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.260-274
    • /
    • 2005
  • An experimental investigation was performed to study the characteristics of turbulent swirling flow in the cylindrical annuli. The swirl angle measurements were performed by flow visualization technique using smoke and dye liquid. By using the particle image velocimetry method. this study has found the time-mean velocity distribution and turbulent intensity with swirl for Re=20,000. 30.000. 50.000. and 70,000 along longitudinal sections. The results appear to be physically reasonable. Other experimental study was performed to investigate heat transfer characteristics of turbulent swirling air flow in axisymmetric annuli. The static pressure. the local air flow temperature, and the wall temperature with decaying swirl were measured by using thermocouples and the friction factor and the local Nusselt number were calculated for Re=30,000. 50,000 and 70000. The local Nusselt number was compared with that obtained from the Dittus-Boelter equation with swirl and without swirl, respectively. The results showed that the swirl enhances the heat transfer at the inlet and the outlet of the test tube.