References
- Kushik, J.; Berne, B. J. Modern Theoretical Chemistry. Vol. 6. Statistical Mechanics. Part B. Time Dependent Process; Plenum: New York, 1977; Chap. 6.
- Evans, D. J. Mol. Phys. 1979, 37, 1745. https://doi.org/10.1080/00268977900101291
- Evans, D. J. Phys. Lett. A 1979, 74, 229. https://doi.org/10.1016/0375-9601(79)90778-3
- Evans, D. J. J. Stat. Phys. 1980, 22, 81. https://doi.org/10.1007/BF01007990
- Hoover, W. G.; Evans, D. J.; Hickman, R. B.; Ladd, A. J. C.; Ashurst, W. T.; Moran, B. Phys. Rev. A 1980, 22, 1690. https://doi.org/10.1103/PhysRevA.22.1690
- Evans, D. J.; Hanley, H. J. M. Physica A 1980, 103, 343. https://doi.org/10.1016/0378-4371(80)90222-8
- Evans, D. J. Phys. Rev. A 1981, 23, 1988. https://doi.org/10.1103/PhysRevA.23.1988
- Evans, D. J. Mol. Phys. 1981, 41, 1355. https://doi.org/10.1080/00268978000103591
- Evans, D. J. Phys. Lett. A 1982, 91, 457. https://doi.org/10.1016/0375-9601(82)90748-4
- Evans, D. J.; Hoover, W. G.; Failor, B. H.; Moran, B.; Ladd, V. J. C. Phys. Rev. A 1983, 28, 1016. https://doi.org/10.1103/PhysRevA.28.1016
- Gillan, M. J.; Dixon, M. J. Phys. C 1983, 16, 869. https://doi.org/10.1088/0022-3719/16/5/013
- Evans, D. J. J. Chem. Phys. 1983, 78, 3297. https://doi.org/10.1063/1.445195
- Evans, D. J. Physica A 1983, 118, 51. https://doi.org/10.1016/0378-4371(83)90176-0
- Evans, D. J.; Morris, G. P. Chem. Phys. 1983, 77, 63. https://doi.org/10.1016/0301-0104(83)85065-4
- Evans, D. J.; Morris, G. P. Phys. Rev. A 1984, 30, 1528. https://doi.org/10.1103/PhysRevA.30.1528
- Simmons, A. D.; Cummings, P. T. Chem. Phys. Lett. 1986, 129, 92. https://doi.org/10.1016/0009-2614(86)80176-2
- Evans, D. J. Phys. Rev. A 1986, 34, 1449. https://doi.org/10.1103/PhysRevA.34.1449
- Cummings, P. T.; Morris, G. P. J. Phys. F: Met. Phys. 1987, 17, 593. https://doi.org/10.1088/0305-4608/17/3/007
- Cummings, P. T.; Morris, G. P. J. Phys. F: Met. Phys. 1988, 18, 1439. https://doi.org/10.1088/0305-4608/18/7/013
- Cummings, P. T.; Varner, T. L. J. Chem. Phys. 1988, 89, 6391. https://doi.org/10.1063/1.455407
- Evans, D. J.; Morris, G. P. Comput. Phys. Rep. 1984, 1, 297. https://doi.org/10.1016/0167-7977(84)90001-7
- Ciccotti, G.; Jacucci, G.; McDonald, I. R. J. Stat. Phys. 1979, 21, 1. https://doi.org/10.1007/BF01011477
- Morriss, G. P.; Evans, D. J. Mol. Phys. 1985, 54, 135.
- Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press.: Oxford, 1987; p 64.
- Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press.: Oxford, 1987; p 80.
- Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press.: Oxford, 1987; p 81.
- Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equation; Prentice-Hall: Englewood Cliffs, NJ, 1971.
- Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press.: Oxford, 1987; p 48.
- Malevanets, A.; Kapral, R. J. Chem. Phys. 2000, 112, 7260 https://doi.org/10.1063/1.481289
- Lee, S. H.; Kapral, R. Physica A 2001, 298, 56. https://doi.org/10.1016/S0378-4371(01)00211-4
- Haile, J. M. Molecular Dynamics Simulation; Wiley: New York, 1992; Chap. 7.
- Cook, G. A. Argon, Helium and the Rare Gases; Intersciences: NY, 1961.
- Moon, C. B.; Moon, G. K.; Lee, S. H. Bull. Korean Chem. Soc. 1991, 12, 309.
Cited by
- A Molecular Dynamics Study of Description Models for Shear Viscosity in Nanochannels: Mixtures and Effect of Temperature vol.19, pp.3, 2015, https://doi.org/10.1080/15567265.2015.1065527
- Molecular dynamics simulation to assess the effect of temperature on diffusion coefficients of different ions and water molecules in C-S-H pp.1573-2738, 2017, https://doi.org/10.1007/s11043-017-9368-6
- -alkanes vol.145, pp.20, 2016, https://doi.org/10.1063/1.4967873
- Shear Viscosity of Benzene, Toluene, and p-Xylene by Non-equilibrium Molecular Dynamics Simulations vol.25, pp.2, 2003, https://doi.org/10.5012/bkcs.2004.25.2.321
- Transport Properties of Dumbbell Molecules by Equilibrium Molecular Dynamics Simulations vol.25, pp.5, 2003, https://doi.org/10.5012/bkcs.2004.25.5.737
- Molecular Dynamics Simulation Study of the Transport Properties of Liquid Argon: The Green-Kubo Formula Revisited vol.28, pp.8, 2003, https://doi.org/10.5012/bkcs.2007.28.8.1371
- Equilibrium Molecular Dynamics Simulation Study for Transport Properties of Noble Gases: The Green-Kubo Formula vol.34, pp.10, 2003, https://doi.org/10.5012/bkcs.2013.34.10.2931
- Molecular Dynamics Simulation Study for Shear Viscosity of Water at High Temperatures using SPC/E Water Model vol.35, pp.2, 2003, https://doi.org/10.5012/bkcs.2014.35.2.644
- Size Effect on Transport Properties of Gaseous Argon: A Molecular Dynamics Simulation Study vol.35, pp.5, 2003, https://doi.org/10.5012/bkcs.2014.35.5.1559
- Size Effect on Transport Properties of Liquid Argon: A Molecular Dynamics Simulation Study vol.58, pp.5, 2003, https://doi.org/10.5012/jkcs.2014.58.5.500
- Improving Monte-Carlo and Molecular Dynamics Simulation Outcomes Using Temperature-Dependent Interaction Parameters: The Case of Pure LJ Fluid vol.12, pp.2, 2003, https://doi.org/10.1142/s0219876215500036
- Rheology of liquid n-triacontane: Molecular dynamics simulation vol.774, pp.None, 2003, https://doi.org/10.1088/1742-6596/774/1/012039
- Molecular dynamics simulations of the effect of surface wettability on nanoscale liquid film phase-change vol.75, pp.8, 2003, https://doi.org/10.1080/10407782.2019.1608768
- An Investigation on Thermal Conductivity of Fluid in a Nanochannel by Nonequilibrium Molecular Dynamics Simulations vol.142, pp.3, 2003, https://doi.org/10.1115/1.4045750
- Liquid Transport Through Nanoscale Porous Media with Strong Wettability vol.140, pp.3, 2003, https://doi.org/10.1007/s11242-020-01519-5