DOI QR코드

DOI QR Code

Molecular Dynamics Simulations for Transport Coefficients of Liquid Argon : New Approaches

  • Lee, Song-Hi (Basic Science Research Center, Kyungsung University) ;
  • Park, Dong-Kue (Basic Science Research Center, Kyungsung University) ;
  • Kang, Dae-Bok (Basic Science Research Center, Kyungsung University)
  • Published : 2003.02.20

Abstract

The stress and the heat-flux auto-correlation functions in the Green-Kubo formulas for shear viscosity and thermal conductivity have non-decaying long-time tails. This problem can be overcome by improving the statistical accuracy by N (number of particles) times, considering the stress and the heat-flux of the system as properties of each particle. The mean square stress and the heat-flux displacements in the Einstein formulas for shear viscosity and thermal conductivity are non linear functions of time since the quantities in the mean square stress and the heat-flux displacements are not continuous under periodic boundary conditions. An alternative to these quantities is to integrate the stress and the heat-flux with respect to time, but the resulting mean square stress and heat-flux displacements are still not linear versus time. This problem can be also overcome by improving the statistical accuracy. The results for transport coefficients of liquid argon obtained are discussed.

Keywords

References

  1. Kushik, J.; Berne, B. J. Modern Theoretical Chemistry. Vol. 6. Statistical Mechanics. Part B. Time Dependent Process; Plenum: New York, 1977; Chap. 6.
  2. Evans, D. J. Mol. Phys. 1979, 37, 1745. https://doi.org/10.1080/00268977900101291
  3. Evans, D. J. Phys. Lett. A 1979, 74, 229. https://doi.org/10.1016/0375-9601(79)90778-3
  4. Evans, D. J. J. Stat. Phys. 1980, 22, 81. https://doi.org/10.1007/BF01007990
  5. Hoover, W. G.; Evans, D. J.; Hickman, R. B.; Ladd, A. J. C.; Ashurst, W. T.; Moran, B. Phys. Rev. A 1980, 22, 1690. https://doi.org/10.1103/PhysRevA.22.1690
  6. Evans, D. J.; Hanley, H. J. M. Physica A 1980, 103, 343. https://doi.org/10.1016/0378-4371(80)90222-8
  7. Evans, D. J. Phys. Rev. A 1981, 23, 1988. https://doi.org/10.1103/PhysRevA.23.1988
  8. Evans, D. J. Mol. Phys. 1981, 41, 1355. https://doi.org/10.1080/00268978000103591
  9. Evans, D. J. Phys. Lett. A 1982, 91, 457. https://doi.org/10.1016/0375-9601(82)90748-4
  10. Evans, D. J.; Hoover, W. G.; Failor, B. H.; Moran, B.; Ladd, V. J. C. Phys. Rev. A 1983, 28, 1016. https://doi.org/10.1103/PhysRevA.28.1016
  11. Gillan, M. J.; Dixon, M. J. Phys. C 1983, 16, 869. https://doi.org/10.1088/0022-3719/16/5/013
  12. Evans, D. J. J. Chem. Phys. 1983, 78, 3297. https://doi.org/10.1063/1.445195
  13. Evans, D. J. Physica A 1983, 118, 51. https://doi.org/10.1016/0378-4371(83)90176-0
  14. Evans, D. J.; Morris, G. P. Chem. Phys. 1983, 77, 63. https://doi.org/10.1016/0301-0104(83)85065-4
  15. Evans, D. J.; Morris, G. P. Phys. Rev. A 1984, 30, 1528. https://doi.org/10.1103/PhysRevA.30.1528
  16. Simmons, A. D.; Cummings, P. T. Chem. Phys. Lett. 1986, 129, 92. https://doi.org/10.1016/0009-2614(86)80176-2
  17. Evans, D. J. Phys. Rev. A 1986, 34, 1449. https://doi.org/10.1103/PhysRevA.34.1449
  18. Cummings, P. T.; Morris, G. P. J. Phys. F: Met. Phys. 1987, 17, 593. https://doi.org/10.1088/0305-4608/17/3/007
  19. Cummings, P. T.; Morris, G. P. J. Phys. F: Met. Phys. 1988, 18, 1439. https://doi.org/10.1088/0305-4608/18/7/013
  20. Cummings, P. T.; Varner, T. L. J. Chem. Phys. 1988, 89, 6391. https://doi.org/10.1063/1.455407
  21. Evans, D. J.; Morris, G. P. Comput. Phys. Rep. 1984, 1, 297. https://doi.org/10.1016/0167-7977(84)90001-7
  22. Ciccotti, G.; Jacucci, G.; McDonald, I. R. J. Stat. Phys. 1979, 21, 1. https://doi.org/10.1007/BF01011477
  23. Morriss, G. P.; Evans, D. J. Mol. Phys. 1985, 54, 135.
  24. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press.: Oxford, 1987; p 64.
  25. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press.: Oxford, 1987; p 80.
  26. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press.: Oxford, 1987; p 81.
  27. Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equation; Prentice-Hall: Englewood Cliffs, NJ, 1971.
  28. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press.: Oxford, 1987; p 48.
  29. Malevanets, A.; Kapral, R. J. Chem. Phys. 2000, 112, 7260 https://doi.org/10.1063/1.481289
  30. Lee, S. H.; Kapral, R. Physica A 2001, 298, 56. https://doi.org/10.1016/S0378-4371(01)00211-4
  31. Haile, J. M. Molecular Dynamics Simulation; Wiley: New York, 1992; Chap. 7.
  32. Cook, G. A. Argon, Helium and the Rare Gases; Intersciences: NY, 1961.
  33. Moon, C. B.; Moon, G. K.; Lee, S. H. Bull. Korean Chem. Soc. 1991, 12, 309.

Cited by

  1. A Molecular Dynamics Study of Description Models for Shear Viscosity in Nanochannels: Mixtures and Effect of Temperature vol.19, pp.3, 2015, https://doi.org/10.1080/15567265.2015.1065527
  2. Molecular dynamics simulation to assess the effect of temperature on diffusion coefficients of different ions and water molecules in C-S-H pp.1573-2738, 2017, https://doi.org/10.1007/s11043-017-9368-6
  3. -alkanes vol.145, pp.20, 2016, https://doi.org/10.1063/1.4967873
  4. Shear Viscosity of Benzene, Toluene, and p-Xylene by Non-equilibrium Molecular Dynamics Simulations vol.25, pp.2, 2003, https://doi.org/10.5012/bkcs.2004.25.2.321
  5. Transport Properties of Dumbbell Molecules by Equilibrium Molecular Dynamics Simulations vol.25, pp.5, 2003, https://doi.org/10.5012/bkcs.2004.25.5.737
  6. Molecular Dynamics Simulation Study of the Transport Properties of Liquid Argon: The Green-Kubo Formula Revisited vol.28, pp.8, 2003, https://doi.org/10.5012/bkcs.2007.28.8.1371
  7. Equilibrium Molecular Dynamics Simulation Study for Transport Properties of Noble Gases: The Green-Kubo Formula vol.34, pp.10, 2003, https://doi.org/10.5012/bkcs.2013.34.10.2931
  8. Molecular Dynamics Simulation Study for Shear Viscosity of Water at High Temperatures using SPC/E Water Model vol.35, pp.2, 2003, https://doi.org/10.5012/bkcs.2014.35.2.644
  9. Size Effect on Transport Properties of Gaseous Argon: A Molecular Dynamics Simulation Study vol.35, pp.5, 2003, https://doi.org/10.5012/bkcs.2014.35.5.1559
  10. Size Effect on Transport Properties of Liquid Argon: A Molecular Dynamics Simulation Study vol.58, pp.5, 2003, https://doi.org/10.5012/jkcs.2014.58.5.500
  11. Improving Monte-Carlo and Molecular Dynamics Simulation Outcomes Using Temperature-Dependent Interaction Parameters: The Case of Pure LJ Fluid vol.12, pp.2, 2003, https://doi.org/10.1142/s0219876215500036
  12. Rheology of liquid n-triacontane: Molecular dynamics simulation vol.774, pp.None, 2003, https://doi.org/10.1088/1742-6596/774/1/012039
  13. Molecular dynamics simulations of the effect of surface wettability on nanoscale liquid film phase-change vol.75, pp.8, 2003, https://doi.org/10.1080/10407782.2019.1608768
  14. An Investigation on Thermal Conductivity of Fluid in a Nanochannel by Nonequilibrium Molecular Dynamics Simulations vol.142, pp.3, 2003, https://doi.org/10.1115/1.4045750
  15. Liquid Transport Through Nanoscale Porous Media with Strong Wettability vol.140, pp.3, 2003, https://doi.org/10.1007/s11242-020-01519-5