• Title/Summary/Keyword: debris flow hazard

Search Result 68, Processing Time 0.031 seconds

Analysis of Debris Flow Hazard Zone by the Optimal Parameters Extraction of Random Walk Model - Case on Debris Flow Area of Bonghwa County in Gyeongbuk Province - (Random Walk Model의 최적 파라미터 추출에 의한 토석류 피해범위 분석 - 경북 봉화군 토석류 발생지를 대상으로 -)

  • Lee, Chang-Woo;Woo, Choongshik;Youn, Ho-Joong
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.664-671
    • /
    • 2011
  • Random Walk Model can predict the sediment areas of debris flow but it must be extracted three parameters fitted topographical environment. This study developed the method to extract the optimal values of three parameters - Once flowing volume, Stopping slope and Gravity weight - for Random Walk Model. And the extracted parameters were validated by aerial photographs of the debris flowed area. To extract the optimal parameters was randomly performed, limiting the range values of three parameters and developing an accuracy decision method that is called the rate of concordance. The set of the optimal parameters was decided on highest the rate of concordance and a consistency. As a result, the optimal parameters in Bonghwa county were showed that the once flowing volume is $1.0m^3$, the stopping slope is $4.2^{\circ}$ and the gravity weight is 2 when the rate of concordance is -0.2. The validating result of the optimal parameters showed closely that the rate of concordance is average -0.2.

Slope stability analysis and landslide hazard assessment in tunnel portal area (터널 갱구지역 사면안정성 및 산사태 위험도 평가)

  • Jeong, Hae-Geun;Seo, Yong-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.387-400
    • /
    • 2013
  • In this study, the slope stability analysis and the landslide hazard assessment in tunnel portal slope were carried out. First, we selected highly vulnerable areas to slope failure using the slope stability analysis and analyzed the slope failure scale. According to analyses results, high vulnerable area to slope failure is located at 485~495 m above sea level. The slope is stable in a dry condition, while it becomes unstable in rainfall condition. The analysis results of slope failure scale show that the depth of slope failure is maximum 2.1 m and the length of slope failure is 18.6 m toward the dip direction of slope. Second, we developed a 3-D simulation program to analyze characteristics of runout behavior of debris flow. The developed program was applied to highly vulnerable areas to slope failure. The result of 3-D simulation shows that debris flow moves toward the central part of the valley with the movement direction of landslide from the upper part to the lower part of the slope. 3-D simulation shows that debris flow moves down to the bottom of mountain slope with a speed of 7.74 m/s and may make damage to the tunnel portal directly after 10 seconds from slope failure.

Estimating Soil Thickness in a Debris Flow using Elastic Wave Velocity (탄성파 속도를 활용한 토석류 위험지역의 표토층 두께 결정)

  • Min, Dae-Hong;Park, Chung-Hwa;Lee, Jong-Sub;Yoon, Hyung-Koo
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.143-152
    • /
    • 2016
  • To estimate the stability of a debris flow it is necessary to know the mass of surface soil, cohesion, slope, and friction angle. Given that the mass of surface soil is a function of soil thickness and mass density, it is important to obtain reliable estimates of soil thickness across a wide area. The objective of this paper is to estimate soil thickness using the elastic wave velocity with a new standard velocity. Tests are performed in debris-flow hazard areas, after which four profiles are selected to obtain the elastic wave velocity. Dynamic cone penetration tests are carried out to find the soil thickness at 18 points. The elastic wave velocity shows the area consists of 3~4 layers, and soil thicknesses are predicted by utilizing the new standard. The elastic wave velocity and dynamic cone penetration tests yield large differences in soil thickness. Therefore, this study shows that the new standard is useful not only in estimating soil thickness but also in improving the reliability of estimates of soil thickness.

The in-situ Assessment of GIS-Based Geotechnical Hazard Map (GIS기반 지반재해위험지도의 현장 적용성 평가)

  • Ryu, Ji Hyeob;Seo, Sang Hoon;Hwang, Ui Jin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.1
    • /
    • pp.35-45
    • /
    • 2013
  • In recent years, increasing damage due to landslides. So the government is to create a geotechnical hazard map. This study was to evaluate the applicability of the geotechnical hazard map by using 4 years of landslide cases in Seoul and Busan. And the in-situ aseessment has been carried out in test-bad area with specialists. Study has shown dangerous grade in geotechnical hazard map is more dangerous than the actual. Thus we can utilize geotechnical hazrd map in the purpose of the geotechnical hazard preliminary assessment. However, the in-site inspection and evaluation is required for in order to select the hazard area.

A study on the Debris Flow Hazard Evaluation using sinmap (sinmap을 활용한 산사태 위험도 평가)

  • Lee, Geun-baek;Yun, Hong-Sic;Kim, Tae-Yun
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2016.11a
    • /
    • pp.428-432
    • /
    • 2016
  • 자연재해는 전 세계적으로 몇 조원에 이르는 피해를 주고 있으며 근래에는 기후변화로 인한 이상기후현상으로 집중호우의 빈도가 증가하고 있으며 홍수, 산사태 토석류 등 발생빈도가 늘어나고 있는 추세이다. 최근 2011년 서울에서 발생한 우면산 토석류의 피해와 강원도 일부 지역의 피해로 인해 많은 피해가 일어났으며, 국가에서는 산사태 피해를 최소화하기 위해서는 장기적으로는 위험한 지역에 구조물을 설치하는 등 예방사방을 실시하고, 단기적으로는 위험요소의 제거와 위험지역의 예측을 통한 경계피난체재를 철저히 할 필요성이 강조되고 있는 실정이다. 특히, 강원도는 산지로 이루어져 있으며, 매년 집중호우나 태풍이 지나간 다음, 많은 양의 강우량으로 인해 산길을 지나는 도로에 토석류로 인해 길이 막혀 이동이 불가능 하게 되거나 산지 아래에 있는 건물이 산에서 쓸려서 내려오는 토사와 나무에 의해 파괴되어 물질적인 피해를 입는 영상이 뉴스를 통해 많이 접하고 있다. 본 연구에서는 토석류에 대한 전반적인 특성을 설명하고 체계적인 관리가 필요하다. 연구 지역은 춘천지역을 대상으로 SINMAP 모델 기법의 조도계수와 특성을 고려한 위험지도를 작성하였고 산사태 일부 지역에 대한 위험도 평가를 하였다.

  • PDF

Flexible Concept Applicable to Railway (유연성 원리를 이용한 철도변 사면보강시스템 적용사레연구)

  • Choi Yu-Kyung;Choi Seung-Il;Ro Byung-Don;Kim Hyung-Min
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.203-210
    • /
    • 2005
  • Rockey slopes adjacent to railways are disclosed from severe weathering and hazard of failure of themselves. Consequently it causes directly rockfall or landsliding on the railway. Conventional solutions-rigid system like rocksheds, shotcrete, retaining walls, etc to these causes are limited to protect train, rail, our properties and lives from the harmful attack - rockfall. debris flow and sliding. Flexible concept for solutions with passive and active type method based on Euro Code 7 capable of high energy absorption and light materials are rapidly replacing the rigid systems with natural friendly, early installation, cost and time saving and reducing danger in works all over the world.

  • PDF

A Study on the Risk Impact Map Development of Considering the Debris flow Hazard and Impact Level (토석류 발생가능성 및 시설안전성을 고려한 토석류 위험지도작성에 관한 연구)

  • Nam, Dong Ho;Lee, Suk Ho;Kim, Byung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.296-296
    • /
    • 2019
  • 전 세계적으로 기후변화로 인한 국지성 집중호우 및 태풍으로 인한 피해가 지속적으로 발생하고 있으며, 그에 따른 2차 피해인 산사태 및 토석류 피해 또한 증가하고 있는 추세이다. 최근 국내의 산사태 및 토석류에 대한 선행연구는 지속적으로 수행되고 있으나, 산사태 및 토석류 위험성이 높은 구간, 즉, 발생기작을 판단할 수 있도록 지표화 해놓은 것이며, 현재 피해예측지도 및 피해 하류부의 시설물을 고려한 연구는 미비한 실정이다. 따라서 본 연구에서는 강우-유출모형인 S-RAT모형 및 토석류 수치해석 프로그램 RAMMS 모형을 이용하여 산사태 및 토석류 피해를 극대화 시키는 인자인 토석유동심(H), 토석유속(V)을 이용하여 토석류피해예측지도를 작성하였으며, 피해 하류부의 시설물을 건물 유형별 시설물의 중요도로 구분하였다. 또한 작성된 피해예측지도 및 시설물 중요도를 중첩하여 위험성 지도를 제시하였다.

  • PDF

Evaluation of GIS-based Landslide Hazard Mapping (GIS 기반 산사태 예측모형의 적용성 평가)

  • Oh, Kyoung-Doo;Hong, Il-Pyo;Jun, Byong-Ho;Ahn, Won-Sik;Lee, Mee-Young
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.1 s.162
    • /
    • pp.23-33
    • /
    • 2006
  • In this study, application potential of SINMAP, a GIS-based landslide hazard mapping tool, is evaluated through a case study. Through the application to the severe landslide events occurred during a heavy storm in 1991 on the Mt. Dalbong area about 78 kilometers south from Seoul, SINMAP successfully spotted most landslide sites. The effects and proper ranges of three calibration parameters of SINMAP, i.e. the soil internal friction angle, the combined cohesion of tree roots and soil, and T/R, were examined through comparison of predicted landslides with the landslide inventory data. From the findings of this study, it seems that SINMAP could be used as an effective screening tool for landslide hazard mapping especially for mountain areas with fairly steep slopes and relatively thin soil layers.

Estimation of the Flash Flood Index by the Probable Rainfall Data for Ungauged Catchments (미계측 유역에서의 확률강우에 대한 돌발홍수지수 산정)

  • Kim, Eung-Seok;Choi, Hyun-Il;Jee, Hong-Kee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.81-88
    • /
    • 2010
  • As there occurs recently and frequently a flash flood due to the climate change, a sudden local flood of great volume and short duration caused by heavy or excessive rainfall in a short period of time over a small area, it is increasing that significant danger and loss of life and property in Korea as well as the whole world. Since a flash flood usually occurs as the result of intense rainfall over small steep slope regions and has rapid runoff and debris flow, a flood rises quite quickly with little or no advance warning to prevent flood damage. The aim of this study is to quantify the severity of flash food by estimation of a flash flood index(FFI) from probability rainfall data in a study basin. FFI-D-F(FFI-Duration-Frequency) curves that present the relative severity of flash flood are developed for a study basin to provide regional basic information for the local flood forecasting and warning system particularly in ungauged catchments. It is also expected that FFI-D-F curves can be utilized for evaluation on flash flood mitigation ability and residual flood risk of both existing and planned flood control facilities.

Analysis of Slope Hazard Probability around Jinjeon-saji Area located in Stone Relics (석조문화재가 위치한 진전사지 주변의 사면재해 가능성 분석)

  • Kim, Kyeong-Su;Song, Young-Suk;Cho, Yong-Chan;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.18 no.3
    • /
    • pp.303-309
    • /
    • 2008
  • A probability of slope hazards was predicted at a natural terrain around the stone relics of Jinjeon-saji area, which is located in Yangyang, Kangwon Province. As the analyzing results of field investigation, laboratory test and geology and geomorphology data, the effect factors of landslides occurrence were evaluated. Also, the landslides prediction map was made up using the prediction model by the effect factors. The landslide susceptibility of stone relics was investigated as the grading classification of occurrence probability. In the landslides prediction map, the high probability area was $3,489m^2$ and it was 10.1% of total prediction area. The high probability area has over 70% of occurrence probability. If landslides are occurred at the predicted area, the three stories stone pagoda of Jinjeon-saji(National treasure No. 122) and the stone lantern of Jinjeon-saji(Treasure No.439) will be collapsed by debris flow.