• Title/Summary/Keyword: death receptors

Search Result 129, Processing Time 0.023 seconds

Cell Death Study in Embryonic Stem Cell-derived Neurons and Its Applications (배아줄기세포 유래 신경계세포에서의 세포사멸 연구와 그 응용)

  • Lee, Chul-Sang
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Specific protocols to increase the differentiation of neuronal cells from embryonic stem (ES) cells have been well established, such as retinoic acid induction and lineage selection of neuronal cells. For the neuropathological studies, ES-derived neurons (ES neurons) must show normal physiological characteristics related to cell death and survival and should be maintained in vitro for a sufficient time to show insults-specific cell death without spontaneous death. When mouse ES cells were plated onto astrocytes monolayer after retinoic acid induction, most ES cells differentiated into neuronal cells, which were confirmed by the presence of specific neuronal markers, and the cultures were viable for at least four weeks. When these cultures were examined for vulnerability to glutamate excitotoxicity, ES neurons were vulnerable to excitotoxic insults mediated by agonist-specific receptors. The vulnerability to excitotoxic death increased with developmental age of ES neurons in vitro. Specific receptors for Neurotrophin and GDNF family ligands were present in ES neurons. GDNF and NT-3 could modulate the survival and excitotoxic vulnerability of ES neurons. The vulnerability and resistance to toxic insults, which are essential requirements of model culture systems for neuropathological studies, make ES neurons to a useful model culture system. Especially ES cell are highly amenable to genetic modification unlikely to primary neuronal cells, which will give us a chance to answer more complicated neurophysiological questions. Recently there was an outstanding attempt to explore the cellular toxicity using human ES cells (Schrattenholz & Klemm, 2007) and it suggested that ES cells could be a new model system for neurophysiological studies soon and go further a large-scale screening system for pharmacological compounds in the future.

  • PDF

Immunohistochemical Analysis for the Expression of DR5 TRAIL Receptor and p53 in Non-small Cell Lung Cancer (비소세포폐암에서 DR5 TRAIL 수용체와 p53에 관한 면역조직화학적 분석)

  • Lee, Kye-Young;Lee, Jung-Hyun;Kim, Sun-Jong;Yoo, Kwang-Ha
    • Tuberculosis and Respiratory Diseases
    • /
    • v.64 no.4
    • /
    • pp.278-284
    • /
    • 2008
  • Background: TRAIL is a promising anticancer agent which induces selective tumor cell death due to a unique receptor system that includes death receptors and decoy receptors. DR5 TRAIL receptor is an originally identified p53-regulated death receptor gene that was induced, by doxorubicine, only in cells with a wild-type p53 status. We investigated that focused on the correlation between the DR5 and p53 expressions in non-small cell lung cancer (NSCLC). Methods: Immunohistochemical analysis, with using avidin-biotinylated horseradish peroxidase complex, was carried out in 89 surgically resected NSCLC formalin-fixed paraffin-embedded tissue sections. As primary antibodies, we used anti-DR5 polyclonal antibody and anti-p53 monoclonal antibody. A negative control was processed with each slide. The positive tumor cells were quantified twice and these values were expressed as percentage of the total number of tumor cells, and the intensity of immunostaining was expressed. The analysis of the DR5 expression was done separately in tumor area and in a nearby region of normal tissue. Results: The DR5 expression was high in the bronchial epithelium (89% of cases) but this was almost absent in type I & II pneumocytes, lymphocytes and smooth muscle cells. High DR5 expression rate in tumor was seen in 28% (15/53) of squamous cell carcinomas, in 47% (15/32) of adenocarcinomas and, in 50% (2/4) of large cell carcinomas. The DR5 expression did not show any statistical significance relationship with the T stage, N stage, or survival. However, the DR5 expression showed significant inverse correlation with the p53 expression. (p< 0.01). Conclusion: We demonstrated that the DR5 expression in NSCLC via immunohistochemical analysis is relatively tumor-specific except for that in the normal bronchial epithelium and it is significantly dependent on the p53 status. This might be in vivo evidence for the significance of the DR5 gene as a p53 downstream gene.

An Availability Assessment of Protection Wall Installed in LPG Filling Station (LPG 충전소 내 설치된 방호벽의 효용성 평가)

  • Lee, Jin-Han;Jo, Young-Do;Moon, Jong-Sam;Kim, Lae Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.5
    • /
    • pp.38-45
    • /
    • 2018
  • Jet fire, pool fire, and vapor cloud explosion are major accident scenarios in LPG filling station. The protection wall would mitigate radiation effect in a jet fire. In case of a pool fire, the protection wall would restrict expanding the pool area. The protection wall might both obstruct the dispersion of released vapor and protect blast overpressure in a vapor cloud explosion scenario. In this paper, An availability assessment method of the protection wall how much reduce damage to receptors is proposed. Additionally application cases are presented for the effectiveness of protection wall in the LPG filling station. The study shows that the protection wall can effectively reduce the death probabilities of receptors located behind the wall in cases of the jet fires and the vapor cloud explosions.

Inhibitory Modulation of 5-Hydroxytryptamine on Corticostriatal Synaptic Transmission in Rat Brain Slice

  • Choi, Se-Joon;Chung, Won-Soon;Kim, Ki-Jung;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.295-301
    • /
    • 2003
  • Striatum plays a crucial role in the movement control and habitual learning. It receives an information from wide area of cerebral cortex as well as an extensive serotonergic (5-hydroxytryptamine, 5-HT) input from raphe nuclei. In the present study, the effects of 5-HT to modulate synaptic transmission were studied in the rat corticostriatal brain slice using in vitro extracellular recording technique. Synaptic responses were evoked by stimulation of cortical glutamatergic inputs on the corpus callosum and recorded in the dorsal striatum. 5-HT reversibly inhibited coticostriatal glutamatergic synaptic transmission in a dose-dependent fashion (5, 10, 50, and $10{\mu}M$), maximally reducing in the corticostriatal population spike (PS) amplitude to $40.1{\pm}5.0$% at a concentration of $50{\mu}M$ 5-HT. PSs mediated by non-NMDA glutamate receptors, which were isolated by bath application of the NMDA receptor antagonist, d,l-2-amino-5-phospohonovaleric acid (AP-V), were decreased by application of $50{\mu}M$ 5-HT. However, PSs mediated by NMDA receptors, that were activated by application of zero $Mg^{2+}$ aCSF, were not significantly affected by $50{\mu}M$ 5-HT. To test whether the corticostriatal synaptic inhibitions by 5-HT might involve a change in the probability of neurotransmitter release from presynaptic nerve terminals, we measured the paired-pulse ratio (PPR) evoked by 2 identical pulses (50 ms interpulse interval), and found that PPR was increased ($33.4{\pm}5.2$%) by 5-HT, reflecting decreased neurotransmitter releasing probability. These results suggest that 5-HT may decrease neurotransmitter release probability of glutamatergic corticostriatal synapse and may be able to selectively decrease non-NMDA glutamate receptor-mediated synaptic transmission.

Characteristics of Purinergic Receptor Expressed in 3T3-L1 Preadipocytes

  • Lee, Hyung-Joo;Baik, Joon-Heum;Kim, Min-Jeong;Kim, Na-Hyun;Kong, In-Deok
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.319-326
    • /
    • 2009
  • Extracellular ATP elicits diverse physiological effects by binding to the G-protein-coupled P2Y receptors on the plasma membrane. In addition to the short-term effects of extracellular nucleotides on cell functions, there is evidence that such purinergic signalling can have long-term effects on cell proliferation, differentiation and death. The 3T3-L1 cell line derived from mouse embryo is a well-established and commonly utilized in vitro model for adipocytes differentiation and function. However, the distributions and roles of P2Y subtypes are still unknown in the preadipocyte. In this study, we identified the distributions and roles of P2Y subtypes in preadipocyte using $Ca^{2+}$ imaging and realtime PCR. ATP increased the $[Ca^{2+}]_i$ in a concentration-dependent manner. ATP increased $Ca^{2+}$ in absence and/or presence of extracellular $Ca^{2+}$. Suramin, non-selective P2Y blocker, largely blocked the ATP-induced $Ca^{2+}$ response. U73122, a PLC inhibitor, completely inhibited $Ca^{2+}$ mobilization in 3T3-L1 cells. The mRNA expression by realtime PCR of P2Y subtypes was $P2Y_2:P2Y_5:P2Y_6=1.0:12.5:0.3$. In conclusion, we showed that $P2Y_5$ receptor is a dominant purinergic receptor in preadipocytes, and multiple P2Y receptors could involve in differentiation and migration via regulating of intracellular calcium concentration.

  • PDF

Inhibitory Effect of Ginsenosides on NMDA Receptor-mediated Signals in Rat Hippocampal Neurons

  • Kim Sunoh;Choo Min-Kyung;Nah Seung-Yeol;Kim Dong-Hyun;Rhim Hyewhon
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.531-544
    • /
    • 2002
  • Ginseng is the best known and most popular herbal medicine used worldwide. Ameliorating effects of ginseng were observed on the models of scopolamine-induced, aged or hippocampal lesioned learning and memory deficits. Further beneficial effects of ginseng were observed on neuronal cell death associated with ischemia or glutamate toxicity. In spite of these beneficial effects of ginseng on the CNS, little scientific evidence shows at the cellular level. In the present study, we have employed cultures of rat hippocampal neurons and examined the direct modulation of ginseng on NMDA receptor-induced changes in $[Ca^{2+}]_i$ and -gated currents using fura-2-based digital imaging and perforated whole-cell patch-clamp techniques, respectively. We found that ginseng total saponins inhibited NMDA-induced but less effectively glutamate-induced increase in $[Ca^{2+}]_i$ Ginseng total saponins also modulated $Ca^{2+}$ transients evoked by depolarization with 50 mM KCI along with its own effects on $[Ca^{2+}]_i$. Among ginsenosides tested, ginsenoside $Rg_3$ was found to be the most potent component for ginseng actions on NMDA receptors. Furthermore, we examined the inhibitory effects ofbiotransformants of ginsenosides on NMDA receptor using purified stereoisomers of ginsenosides. 20(S)-ginsenoside $Rg_3$ and its metabolite, 20(S)-ginsenoside $Rh_3$, produced the strongest inhibition while 20(S)-ginsenoside $Rh_1$ and Compound K produced the moderate inhibition on NMDA-induced increase in $[Ca^{2+}]_i$. The data obtained suggest that the inhibition of NMDA receptors by ginseng, in particular by 20(S)-ginsenoside $Rg_3$ and its metabolite, 20(S)-ginsenoside $Rh_2$, could be one of mechanisms for ginsengmediated neuroprotective actions.

  • PDF

Quercetin Potentiates TRAIL-induced Apoptosis in Human Colon KM12 Cells (사람 대장암 KMl2세포에서 quercetin 의한 TRAIL이 유도하는 세포사멸의 증가)

  • Park, Jun-Ik;Kim, Hak-Bong;Kim, Mi-Ju;Lee, Jae-Won;Bae, Jae-Ho;Park, Soo-Jung;Kim, Dong-Wan;Kang, Chi-Dug;Kim, Sun-Hee
    • Journal of Life Science
    • /
    • v.19 no.9
    • /
    • pp.1209-1217
    • /
    • 2009
  • Many cancer cells are sensitive to the TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. However, some cancer cells show either partial or complete resistance to TRAIL. Human colon carcinoma KM12 cells have been shown to be insensitive to TRAIL-induced apoptosis. To overcome TRAIL resistance in KM12 cells, we targeted key anti-apoptotic molecules involved in the modulation of TRAIL resistance in the cells, and evaluated the effects of quercetin as a TRAIL sensitizer in the cells. We found that quercetin acted in synergy with TRAIL to enhance TRAIL-induced apoptosis in KM12 cells by the down-regulation of c-FLIP and DNA-PKcs/Akt and up-regulation of death receptors (DR4/DR5), which led to the enhancement of TRAIL-mediated activation of caspases and subsequent cleavage of PARP, as well as up-regulation of Bax. These findings suggest that the DNA-PKcs/Akt signaling pathway, as well as c-FLIP, play essential roles in regulating cells in the escape from TRAIL-induced apoptosis. Based on these results, this study provides a potential application of quercetin in combination with TRAIL in the treatment of human colon cancer.

Inhibition of Transient Receptor Potential Melastain 7 Enhances Apoptosis Induced by TRAIL in PC-3 cells

  • Lin, Chang-Ming;Ma, Ji-Min;Zhang, Li;Hao, Zong-Yao;Zhou, Jun;Zhou, Zhen-Yu;Shi, Hao-Qiang;Zhang, Yi-Fei;Shao, En-Ming;Liang, Chao-Zhao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4469-4475
    • /
    • 2015
  • Transient receptor potential melastain 7 (TRPM7) is a bifunctional protein with dual structure of both ion channel and protein kinase, participating in a wide variety of diseases including cancer. Recent researches have reported the mechanism of TRPM7 in human cancers. However, the correlation between TRPM7 and prostate cancer (PCa) has not been well studied. The objective of this study was to investigate the potential the role of TRPM7 in the apoptosis of PC-3 cells, which is the key cell of advanced metastatic PCa. In this study, we demonstrated the influence and potential function of TRPM7 on the PC-3 cells apoptosis induced by TNF-related apoptosis inducing-ligand (TRAIL). The study also found a novel up-regulated expression of TRPM7 in PC-3 cells after treating with TRAIL. Suppression of TRPM7 by TRPM7 non-specific inhibitors ($Gd^{3+}$ or 2-aminoethoxy diphenylborate (2-APB) ) not only markedly eliminated TRPM7 expression level, but also increased the apoptosis of TRAIL-treated PC-3 cells, which may be regulated by the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway accompany with up-regulated expression of cleaved Caspase-3, (TRAIL-receptor 1, death receptors 4) DR4, and (TRAIL-receptor 2, death receptors 5) DR5. Taken together, our findings strongly suggested that TRPM7 was involved in the apoptosis of PC-3 cells induced by TRAIL, indicating that TRPM7 may be applied as a therapeutic target for PCa.

Down-Regulation of Survivin by Nemadipine-A Sensitizes Cancer Cells to TRAIL-Induced Apoptosis

  • Park, Seong Ho;Park, So Jung;Kim, Joo-Oh;Shin, Ji Hyun;Kim, Eun Sung;Jo, Yoon Kyung;Kim, Jae-Sung;Park, So Jung;Jin, Dong-Hoon;Hwang, Jung Jin;Lee, Seung Jin;Jeong, Seong-Yun;Lee, Chaeyoung;Kim, InKi;Cho, Dong-Hyung
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor family of cytokines. TRAIL selectively induces apoptotic cell death in various tumors and cancer cells, but it has little or no toxicity in normal cells. Agonism of TRAIL receptors has been considered to be a valuable cancer-therapeutic strategy. However, more than 85% of primary tumors are resistant to TRAIL, emphasizing the importance of investigating how to overcome TRAIL resistance. In this report, we have found that nemadipine-A, a cell-permeable L-type calcium channel inhibitor, sensitizes TRAIL-resistant cancer cells to this ligand. Combination treatments using TRAIL with nemadipine-A synergistically induced both the caspase cascade and apoptotic cell death, which were blocked by a pan caspase inhibitor (zVAD) but not by autophagy or a necrosis inhibitor. We further found that nemadipine-A, either alone or in combination with TRAIL, notably reduced the expression of survivin, an inhibitor of the apoptosis protein (IAP) family of proteins. Depletion of survivin by small RNA interference (siRNA) resulted in increased cell death and caspase activation by TRAIL treatment. These results suggest that nemadipine-A potentiates TRAIL-induced apoptosis by down-regulation of survivin expression in TRAIL resistant cells. Thus, combination of TRAIL with nemadipine-A may serve a new therapeutic scheme for the treatment of TRAIL resistant cancer cells, suggesting that a detailed study of this combination would be useful.

Anisomycin, an Inhibitor of Protein Synthesis, Overcomes TRAIL Resistance in Human Hepatocarcinoma Cells via Caspases Activation and Bid Downregulation (Caspase 활성 및 Bid의 발현 저하를 통한 단백질 생성 억제제인 anisomycin의 인체간암세포에서 TRAIL 매개 apoptosis 유발의 활성화)

  • Jin, Cheng-Yun;Park, Cheol;Hong, Su Hyun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.769-776
    • /
    • 2014
  • Anisomycin, also known as flagecidin, is an antibiotic produced by Streptomyces griseolus that inhibits protein synthesis by binding to the ribosomal 28S subunit. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a protein that induces apoptotic cell death. TRAIL primarily causes apoptosis in tumor cells by binding to death receptors. Many human cancer cell lines are refractory to TRAIL-induced cell death. In this study, we investigated whether anisomycin could enhance TRAIL-mediated apoptosis in TRAIL-resistant human hepatocarcinoma Hep3B cells. Treatment with anisomycin and TRAIL alone did not reduce cell viability in Hep3B cells. However, in the presence of TRAIL, the anisomycin concentration dependently reduced the cell viability. Our results indicate that anisomycin sensitizes Hep3B cells to TRAIL-mediated apoptosis and that this occurs, at least partly, via caspase activation. Interestingly, Bid knockdown by small interfering RNA significantly reduced the induction of apoptosis in combination with anisomycin and TRAIL, indicating that anisomycin effectively acts to lower the threshold at which TRAIL-mediated truncated Bid triggers the mitochondrial-mediated apoptosis program in Hep3B cells. Therefore, the use of TRAIL in combination with anisomycin might provide an effective therapeutic strategy for the safe treatment of some TRAIL-resistant cancer cells.