• Title/Summary/Keyword: dead reckoning position

Search Result 113, Processing Time 0.037 seconds

UTV localization from fusion of Dead -reckoning and LBL System

  • Woon, Jeon-Sang;Jung Sul;Cheol, Won-Moon;Hong Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.64.4-64
    • /
    • 2001
  • Localization is the key role in controlling the Mobile Robot. In this papers, a development of the sensor fusion algorithm for controling UTV(Unmanned Tracked Vehicle) is presented. The multi-sensocial dead-rocking subsystem is established based on the optimal filtering by first fusing heading angle reading from a magnetic compass, a rate-gyro and two encoders mouned on the robot wheels, thereby computing the deat-reckoned location. These data and the position data provoded by LBL system are fused together by means of an extended Kalman filter. This algorithm is proved by simulation studies.

  • PDF

Neural network based position estimation of mobile robot in slippery environment (Slip이 발생할 때 신경회로망을 이용한 이동로보트의 위치추정에 관한 연구)

  • 최동엽;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.133-138
    • /
    • 1993
  • This paper presents neural network based position estimation method in slippery environment as an approach to solve one of problems which are engaged in dead reckoning method. Position estimator is composed of slip detector and linear velocity estimator. Both of them are based on the fact that dynamic characteristic of mobile robot in slippery environment is different from the case without slip. To find out the dynamic relation among driving torque, angular acceleration of driving wheel and linear acceleration of mobile robot, accelerometer is used for measuring acceleration of mobile robot and neural network is used for dynamic system identifier in slippery environment.

  • PDF

Position estimation method based on the optical displacement sensor for an autonomous hull cleaning robot (선체 청소로봇 자동화를 위한 광 변위센서 기반의 위치추정 방법)

  • Kang, Hoon;Ham, Youn-jae;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.385-393
    • /
    • 2016
  • This paper presents the new position estimation method which contains the optical displacement sensor and the dead reckoning based position estimation algorithm for automation of hull cleaning robot. To evaluate feasibility of the proposed position estimation method on the hull cleaning robot, it was applied on the small scale robot model which has an identical drive method with the hull cleaning robot and then a set of the position estimation experiments were performed. The experimental results of the position estimation demonstrate that the estimated results with the optical displacement sensors is more accurate than used rotary encoder method. In addition, it continuously calculated the robot position quite close to the real robot driving path. In a follow-up study, the proposed position estimation method will be complemented and exploited on the actual hull cleaning robot by adding additional sensor modules that correct measurement errors.

Map Building Using ICP Algorithm based a Robot Position Prediction (로봇 위치 예측에 기반을 둔 ICP 알고리즘을 이용한 지도 작성)

  • Noh, Sung-Woo;Kim, Tae-Gyun;Ko, Nak-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.4
    • /
    • pp.575-582
    • /
    • 2013
  • This paper proposes a map building using the ICP algorithm based robot localization prediction. Proposed method predicts a robot location to dead reckoning, makes a map in the ICP algorithm. Existing method makes a map building and robot position using a sensor value of reference data and current data. In this case, a large interval of the difference of the reference data and the current data is difficult to compensate. The proposed method can map correction through practical experiments.

BtPDR: Bluetooth and PDR-Based Indoor Fusion Localization Using Smartphones

  • Yao, Yingbiao;Bao, Qiaojing;Han, Qi;Yao, Ruili;Xu, Xiaorong;Yan, Junrong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3657-3682
    • /
    • 2018
  • This paper presents a Bluetooth and pedestrian dead reckoning (PDR)-based indoor fusion localization approach (BtPDR) using smartphones. A Bluetooth and PDR-based indoor fusion localization approach can localize the initial position of a smartphone with the received signal strength (RSS) of Bluetooth. While a smartphone is moving, BtPDR can track its position by fusing the localization results of PDR and Bluetooth RSS. In addition, BtPDR can adaptively modify the parameters of PDR. The contributions of BtPDR include: a Bluetooth RSS-based Probabilistic Voting (BRPV) localization mechanism, a probabilistic voting-based Bluetooth RSS and PDR fusion method, and a heuristic search approach for reducing the complexity of BRPV. The experiment results in a real scene show that the average positioning error is < 2m, which is considered adequate for indoor location-based service applications. Moreover, compared to the traditional PDR method, BtPDR improves the location accuracy by 42.6%, on average. Compared to state-of-the-art Wireless Local Area Network (WLAN) fingerprint + PDR-based fusion indoor localization approaches, BtPDR has better positioning accuracy and does not need the same offline workload as a fingerprint algorithm.

Development of Real-Time Vision Aided Navigation Using EO/IR Image Information of Tactical Unmanned Aerial System in GPS Denied Environment (GPS 취약 환경에서 전술급 무인항공기의 주/야간 영상정보를 기반으로 한 실시간 비행체 위치 보정 시스템 개발)

  • Choi, SeungKie;Cho, ShinJe;Kang, SeungMo;Lee, KilTae;Lee, WonKeun;Jeong, GilSun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.401-410
    • /
    • 2020
  • In this study, a real-time Tactical UAS position compensation system based on image information developed to compensate for the weakness of location navigation information during GPS signal interference and jamming / spoofing attack is described. The Tactical UAS (KUS-FT) is capable of automatic flight by switching the mode from GPS/INS integrated navigation to DR/AHRS when GPS signal is lost. However, in the case of location navigation, errors accumulate over time due to dead reckoning (DR) using airspeed and azimuth which causes problems such as UAS positioning and data link antenna tracking. To minimize the accumulation of position error, based on the target data of specific region through image sensor, we developed a system that calculates the position using the UAS attitude, EO/IR (Electric Optic/Infra-Red) azimuth and elevation and numerical map data and corrects the calculated position in real-time. In addition, function and performance of the image information based real-time UAS position compensation system has been verified by ground test using GPS simulator and flight test in DR mode.

An Efficient Method to Update Character Moving Directions for Massively Multi-player Online FPS Games (대규모 온라인 FPS 게임을 위한 효율적인 캐릭터 방향 갱신 기법)

  • Lim, Jong-Min;Lee, Dong-Woo;Kim, Youngsik
    • Journal of Korea Game Society
    • /
    • v.14 no.5
    • /
    • pp.35-42
    • /
    • 2014
  • In the market of First Person Shooter (FPS) games, Massively Multi-player Online FPS games (MMOFPS) like 'PlanetSide 2' have been popular recently. Dead reckoning has been widely used in order to mitigate the network traffic overload for the game server with hundreds or thousands of people. This paper proposes the efficient analytical method to calculate the tolerable threshold angle of moving direction, which is one of the most important factors for character status updating when dead reckoning is used in MMOFPS games. The experimental results with game testers shows that the proposed method minimizes the position error for character moving and provides natural direction updates of characters.

A Study on the Position Compensation of a Mobile Robot Using 2D Position Sensitive Detector (2차원 PSD 를 이용한 이동로보트의 위치 보정에 관한 연구)

  • Ro, Young-Shick;Lee, Ki-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.833-836
    • /
    • 1995
  • The Position Sensitive Detector(PSD) is an useful which can be used to measurement the position of an incidence light in detail and in real-time. In this paper, light sources, to be predefinded positions, are used as landmarks and the 2-D PSD signals are used to compensate the position of a running mobile robot. To induce the position compensation algorithm, first, we inspect the error factor, make the error model, and evaluate the error covariance matrix between the real position and estimated position in dead reckoning system. Next we obtain an optimal position compensation algorithm to update the estimated position using extended Kalman filler by the relation of the external light position and it's PSD signal. Through the simulation of navigating a robot the effectiveness of the proposed method is confirmed.

  • PDF

A study on the PSD sensor system for localization of mobile robots (이동 로봇의 위치측정을 위한 PSD 센서 시스템에 관한 연구)

  • Ro, Young-Shick
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.330-336
    • /
    • 1996
  • An real-time active beacon localization system for mobile robots is developed and implemented. This system permits the estimation of robot positions when detecting light sources by PSD(Position Sensitive Detector) sensor which are placed sparsely over the robots work space as beacons(or landmarks). An LSE(Least Square Estimation) method is introduced to calibrate the internal parameters of a model for the beacon and robot position. The proposed system has two operational modes of position estimation. One is the initial position calculation by the detection of two or more light sources positions of which are known. The other is the continuous position compensation that calculates the position and heading of the robot using the IEKF(Iterated Extended Kalman Filter) applied to the beacon and dead-reckoning data. Practical experiments show that the estimated position obtained by this system is precise enough to be useful for the navigation of robots.

  • PDF

Navigation of a mobile robot using active landmarks (능동 표식을 이용한 이동 로봇의 운행)

  • 노영식;김재숙;권석근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.916-919
    • /
    • 1996
  • An real-time active beacon localization system for mobile robots is developed and implemented. This system permits the estimation of robot positions when detecting light sources by PSD(Position Sensitive Detector) sensor which are placed sparsely over the robot's work space as beacons(or landmarks). An LSE(Least Square Estimation) method is introduced to calibrate the internal parameters of a model for the beacon and robot position. The proposed system has two operational modes of position estimation. One is the initial position calculation by the detection of two or more light sources positions of which are known. The other is the continuous position compensation that calculates the position and heading of the robot using the IEKF(Iterated Extended Kalman Filter) applied to the beacon and dead-reckoning data. Practical experiments show that the estimated position obtained by this system is precise enough to be useful for the navigation of robots.

  • PDF