• Title/Summary/Keyword: dead load

Search Result 345, Processing Time 0.023 seconds

A Study on the Performance of Mechanical Pressurizing Equipment(MPE) for Improving Bond Strength of Repair Materials for Concrete Box Structures (콘크리트 박스 구조물용 보수재의 부착강도 향상을 위한 기계식 가압장비(MPE) 성능에 관한 연구)

  • Yu, Hyeong-Sik;Jung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.477-483
    • /
    • 2020
  • The rehabilitation methods used in existing concrete box structures rely on the method of attaching the repair material to the section of the structure with a spray equipment. In the case of ceiling or wall parts, the adhesion force to the repair material may be reduced by the gravity and dead load after construction. In subway structures, vibration causes a problem that reduces the initial adhesion. Supplementary measures are needed as the quality of repair varies depending on the worker's proficiency and construction environment. In this study, mechanical pressurization equipment was developed that can apply a certain pressure after construction of a repairwork to solve problems such as reduction of adhesion of repair materials by gravity and variation of repair quality by labor work. To find out the effect of the pressurized equipment, a chamber similar to the field conditions was constructed to measure the attachment strength different from the pressurized condition, the section, and the environmental conditions. The pressurization differed from the other parts, but the adhesion strength of up to 70% was increased.

A Development of Prediction Model for Traffic Opening Time of Epoxy Asphalt Pavement Using Nonlinear Curve Fitting (비선형 커브피팅을 이용한 에폭시 아스팔트 포장의 교통개방 예측 모델 개발)

  • Jo, Shin Haeng;Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.3
    • /
    • pp.324-331
    • /
    • 2013
  • Epoxy asphalt concrete is used to reduce dead load and to increase durability on long-span steel bridge overlay. The strength development properties of epoxy asphalt concrete are affected by time and temperature because epoxy asphalt is two-phase reactive materials. The strength development of epoxy asphalt concrete should be predicted precisely to decide traffic opening time. Based on this background in mind, the prediction model for traffic opening time for epoxy asphalt pavement was proposed in this research. The developed model using nonlinear curve fitting revealed R2 value of 0.943 while the R2 value of the existing model using chemical kinetics was 0.806. An improved precise prediction result is to be obtained when the prediction model uses accurate temperature data of pavement.

An Study on the Cylinder Wall Temperature and Performance of Gasoline Engine according to Engine Speed (가솔린기관의 회전수 변화에 따른 실린더 벽면온도 변화 및 기관성능에 관한 연구)

  • Kwon, K.R.;Oho, Y.O.;Kang, N.H.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2002
  • The purpose of this study is preventing the stick, scuffing, scratch between piston and cylinder in advance, and obtaining data for duration test in actual engine operation. The temperature gradient in cylinder bore according to coolant temperature were measured using $1.5{\ell}$ class diesel engine. 20 thermocouples were installed 2mm deep inside from cylinder wall near top ring of piston in cylinder block, at which points major thermal loads exist. It is suggested as proper measurement points for engine design by industrial engineers. Under full load and $70^{\circ}$, $80^{\circ}C$ and $90^{\circ}C$ coolant temperature conditions, the temperature in cylinder block and engine oil increased gradually according to the increase of coolant temperature, the siamese side temperature of top dead center is $142^{\circ}C$ in peripheral distribution, that is about $20^{\circ}C$ higher than that at thrust, anti-thrust, and rear side temperature, respectively. The maximum pressure of combustion gas in $70^{\circ}C$ coolant temperature is about 2 bar lower than those of $80^{\circ}C$ and $90^{\circ}C$ coolant temperature. The engine torque in $80^{\circ}C$, $90^{\circ}C$ coolant temperature condition is about 4.9Nm higher than that of $70^{\circ}C$ coolant temperature.

  • PDF

Behavior of one way reinforced concrete slabs with styropor blocks

  • Al-Azzawi, Adel A.;Abbas, J;Al-Asdi, Al-Asdi
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.451-468
    • /
    • 2017
  • The problem of reducing the self-weight of reinforced concrete structures is very important issue. There are two approaches which may be used to reduced member weight. The first is tackled through reducing the cross sectional area by using voids and the second through using light weight materials. Reducing the weight of slabs is very important as it constitutes the effective portion of dead loads in the structural building. Eleven slab specimens was casted in this research. The slabs are made one way though using two simple supports. The tested specimens comprised three reference solid slabs and eight styropor block slabs having (23% and 29%) reduction in weight. The voids in slabs were made using styropor at the ineffective concrete zones in resisting the tensile stresses. All slab specimens have the dimensions ($1100{\times}600{\times}120mm$) except one solid specimens has depth 85 mm (to give reduction in weight of 29% which is equal to the styropor block slab reduction). Two loading positions or cases (A and B) (as two-line monotonic loads) with shear span to effective depth ratio of (a/d=3, 2) respectively, were used to trace the structural behavior of styropor block slab. The best results are obtained for styropor block slab strengthened by minimum shear reinforcement with weight reduction of (29%). The increase in the strength capacity was (8.6% and 5.7%) compared to the solid slabs under loading cases A and B respectively. Despite the appearance of cracks in styropor block slab with loads lesser than those in the solid slab, the development and width of cracks in styropor block slab is significantly restricted as a result of presence a mesh of reinforcement in upper concrete portion.

Analysis of Nonlinear Behavior and Reliability of PSSC Composite Girder Bridge (PSSC 합성거더 교량의 비선형 거동 분석 및 신뢰도 해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.158-166
    • /
    • 2008
  • Member force, strain and stress distribution of a section are obtained for prestressed steel and concrete(PSSC) composite bridge subjected to dead and live load in order to interpret the effect of prestressing and deformation of tendon. The stress and strain distribution and moment capacity are obtained for both noncomposite and composite section and for allowable stress limit state, yield limit state and strength limit state. Reliability analysis is conducted after assuming limit states for deflection, stress and flexural strength. Comparing that the reliability index for stress is near 0 for example section which is designed to satisfy the allowable stress exactly, the reliability indexes for deflection and flexural strength are high. Reliability of PSSC girder which is designed based on allowable stress of bridge design code is high for deflection and flexural strength.

Analysis of Prestress Effect and Reliability of PSSC Composite Girder Bridge (PSSC 합성거더 교량의 프리스트레스 효과 및 신뢰도 해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.214-224
    • /
    • 2008
  • Member force, strain and stress distribution of a section are obtained for optimized standard 25m~45m PSSC composite bridge subjected to dead and live load in order to interpret the effect of prestressing and deformation of tendon. The stress and strain distribution and moment capacity are obtained for both noncomposite and composite section and for allowable stress limit state, yield limit state and strength limit state. Reliability analysis is conducted after assuming limit states for stress and flexural strength. The reliability index for standard PSSC composite bridge which is designed to satisfy the allowable stress for flexural strength are higher than 3.5 which is required reliability indexes on American code for LRFD. Reliability of PSSC girder which is designed based on allowable stress of bridge design code is high for flexural strength.

Design of an Automatic Winch System for Small Fishing Vessel (소형 어선의 자동 권양 윈치시스템 설계)

  • 이대재;김진건;김병삼
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.157-165
    • /
    • 2000
  • A small hydraulic winch system with an automatic tension control unit was designed to improve the work efficiency of coastal small vessels and the dynamic response characteristics of the winch system operated in the open loop condition was investigated. The inlet and the outlet pressures in hydraulic motor, the torque and the rotating speed of winch drum were measured as a function of time, and the behaviour in autotension mode for stepped load changes was analyzed. The results obtained are summarized as follows : 1. The developed winch system for coastal small vessels will result in better fishing with improved efficiency and lower manpower consumption by remote control of winch system. 2. The rotating delay times of winch drum for on/off operations of solenoid valve were 0.09 see at CW mode and 0.04 sec at CCW mode, respectively. After the solenoid valve was controlled, response characteristics were unstable slightly but showed good tracking behaviour over short time. 3. The driving torque of winch system in autotension mode was kept almost constant of 55.9 kgf·m, and 11.1 then the rotating speed of winch drum was kept almost constant of 5.1 rpm in the larger torque than 55.9 kgf·m and 11.1 rpm in the lower torque than that. 4. The 5% settling times in the transient response characteristics of autotension mode under rapid increasing and decreasing conditions of load were 0.12 sec and 0.2 sec, respectively, and then the rotating speeds were 11 rpm and 5.3 rpm, respectively. 5. The tracking behaviour of torque and rotating speed by remote control operation were stable within 0.23 sec at CW mode and 0.37 sec at CCW mode, respectively.

  • PDF

Strength properties of composite clay balls containing additives from industry wastes as new filter media in water treatment

  • Rajapakse, J.P.;Gallage, C.;Dareeju, B.;Madabhushi, G.;Fenner, R.
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.859-872
    • /
    • 2015
  • Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to $1100^{\circ}C$ at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.

Quasi-Static Test for Seismic Performance of Circular Hollow RC Bridge Pier (원형 중공 콘크리트 교각의 내진성능에 대한 준정적 실험)

  • 정영수;한기훈;이강균;이대형
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.41-54
    • /
    • 1999
  • Because of relatively heavy dead weight of concrete itself and unavoidable heat of massive concrete in bridge piers, circular hollow columns are widely used in Korean highway bridges. Since the occurrence of 1995 Kobe earthquake, there have been much concerns about seismic design for various infrastructures, inclusive of bridge structures. It is, however, understood that there are not much research works for nonlinear behavior of circular hollow columns subjected to eqrthquake motions. The objective of this experimental research is to investigate nonlinear behavior of circular hollow reinforced concrete bridge piers under the quasi-static cyclic load, and then to enhance their ductility by strengthening the plastic hinge region with glassfiber sheets. Particularly for this test, constant 10 cyclic loads have been repeatedly actuated to investigate the magnitude of strength degradation for the displacement ductility factor. Important test parameters are seismic design, confinement steel ratio, axial force and load pattern. It is observed from quasi-static tests for 7 bridge piers that the seismically designed columns and the retrofitted columns show better performance than the nonseismically designed colums, i.e. about 20% higher for energy dissipation capacity and about 70% higher for curvatures.

  • PDF

Allometric Equations of Crown Fuel Biomass and Analysis of Crown Bulk Density for Pinus densiflora (소나무 수관 부위별 연료량 추정식 개발 및 수관연료밀도 분석)

  • Lee, Byung-Doo;Won, Myoung-Soo;Kim, Seon-Young;Yoon, Suk-Hee;Lee, Myung-Bo
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.3
    • /
    • pp.391-396
    • /
    • 2010
  • To analyze the characteristics of canopy fuel in Pinus densiflora stand, which is essential to assess the crown fire hazard, allometric equations for estimation of crown fuel biomass were developed by subjectively categorized crown fuel component and crown bulk density was analyzed by available fuel component categories. Ten trees were destructively sampled at Pinus densiflora stand in Mt. Palgong in Daegu and their crown fuels were weighed separately for each fuel category by size classes and by living and dead. Regression equations that estimate crown fuel load by diameter at breast height(D) or additional total height(H) were derived. The adjusted coefficient of determination values were the highest (${R^2}_{adj}$=0.835-0.996) and standard error of estimate were the lowest (SEE=0.074-0.638) in the allometric equation lnWt=${\alpha}+{\beta}lnD+{\gamma}lnH$ in average. However, in needles and small branches categories, the differences in ${R^2}_{adj}$ and SEE between equations were not significant. Crown bulk density (CBD), which was calculated by crown fuel load divided by crown volume, was 0.067 kg/$m^3$ in average when only needles were considered as available crown fuel and 0.097 kg/$m^3$ when needles and branches (0-0.5 cm diameter) were considered. The increments of CBD of needles and small branches were little even when diameter at breast height increased.