• Title/Summary/Keyword: de-oxidation

Search Result 134, Processing Time 0.031 seconds

Basic Research to Develop PGM-free DeNOx Catalyst for LNT (LNT용 PGM-free DeNOx 촉매 개발을 위한 기초연구)

  • Jang, Kil Nam;Han, Kwang Seon;Hong, Ji Sook;You, Young-Woo;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.117-123
    • /
    • 2015
  • This inquiry was conducted to develop DeNOx catalyst for LNT. In order to develop appropriate catalysts, four catalysts, which do not use PGM (Platinum Group Metal), were carefully selected : Al/Co/Mn, Al/Co/Ni/Mn, Al/Co/Mn/Ca, Al/Co/Ni mixed metal oxides during preliminary experiments. Also, XRD, EDS, SEM, BET and TPD tests were carried as well to evaluate both physicochemical properties of such four catalysts. As a result of the experiment, four catalysts were composed of spinel-shaped crystals and had more than enough pore volume and size to have oxidation-reduction reaction of NOx gases. Additionally, through TPD test, all four types of catalysts were proved to possibly have an oxidation-reduction acid site and NO oxidation activities similar to commercial catalysts. Based on the results above, if we have further change in the composition components and active ingredients according to the catalysts that were chosen in this investigation, then we are more welcomed to expect to have an enhanced DeNox catalyst for LNT.

Grapefruit Juice Suppresses Azoxymethane-induced Colon Aberrant Crypt Formation and Induces Antioxidant Capacity in Mice

  • Madrigal-Bujaidar, Eduardo;Roaro, Laura Martino;Garcia-Aguirre, Karol;Garcia-Medina, Sandra;Alvarez-Gonzalez, Isela
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6851-6856
    • /
    • 2013
  • In the present report we determined the protective capacity of grapefruit juice (GJ) against molecular and cellular damage in azoxymethane (AOM) treated mice. Animals were daily administered GJ orally (0.8, 4.1, and 8.2 ${\mu}l/g$) for seven weeks, as well as intraperitoneally (ip) injected with AOM twice (weeks 2 and 3 of the assay). Control groups administered with water, with the high dose of GJ, and with AOM injected in weeks 2 and 3 were also included. The results showed a significant, dose-dependent protection of GJ on the number of colon aberrant crypts (AC) induced by AOM. The highest inhibitory effect was reached with the highest tested dose of GJ, decreasing ACF by 51% and 43% at weeks 4 and 7 of the assay. Regarding protein and lipid oxidation we also found a dose-dependent decrease caused with GJ in comparison with the increased levels produced by AOM. Therefore, our results established chemopreventive potential for GJ, and suggested effects related to its antioxidant capacity. Finally, we found that the tested agents induced neither micronuclei increase nor alteration in bone marrow cytotoxicity.

Superhydrophobic and Hydrophobic Anodic Aluminum Anodic Oxide Layer: A Review (초발수성 및 발수성 알루미늄 양극산화피막의 최신 연구 동향)

  • Lee, Junghoon
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.1
    • /
    • pp.11-20
    • /
    • 2018
  • Hydrophobic and Superhydrophobic surfaces are promising technology for the surface finishing of metallic materials due to its water-repellency. Realization of highly water-repellent surface on aluminum and its alloys provides various functionalities for real application fields. In order to realize the hydrophobic/superhydrophobic surfaces on aluminum and its alloys, various technologies have been demonstrated. Especially, traditional anodic oxidation for aluminum has been widely employed for the morphological texturing of surfaces, which is essential to enhance the hydrophobic efficiency. De-wetting superhydrophobic surface on aluminum provides various exceptional properties, such as anti-corrosion, anti-/de-icing, anti-biofouling, drag reduction, self-cleaning and liquid separation. Nevertheless, the durability and stability of superhydrophobic surfaces still remain challenges for their actual applications in engineering systems and industry. In this review, the theoretical/experimental studies and current technical limitations on the hydrophobic and superhydrophobic surface using anodic oxidation of aluminum have been summarized.

Sequential adsorption - photocatalytic oxidation process for wastewater treatment using a composite material TiO2/activated carbon

  • Andriantsiferana, Caroline;Mohamed, Elham Farouk;Delmas, Henri
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.181-189
    • /
    • 2015
  • A composite material was tested to eliminate phenol in aqueous solution combining adsorption on activated carbon and photocatalysis with $TiO_2$ in two different ways. A first implementation involved a sequential process with a loop reactor. The aim was to reuse this material as adsorbent several times with in situ photocatalytic regeneration. This process alternated a step of adsorption in the dark and a step of photocatalytic oxidation under UV irradiation with or without $H_2O_2$. Without $H_2O_2$, the composite material was poorly regenerated due to the accumulation of phenol and intermediates in the solution and on $TiO_2$ particles. In presence of $H_2O_2$, the regeneration of the composite material was clearly enhanced. After five consecutive adsorption runs, the amount of eliminated phenol was twice the maximum adsorption capacity. The phenol degradation could be described by a pseudo first-order kinetic model where constants were much higher with $H_2O_2$ (about tenfold) due to additional ${\bullet}OH$ radicals. The second implementation was in a continuous process as with a fixed bed reactor where adsorption and photocatalysis occurred simultaneously. The results were promising as a steady state was reached indicating stabilized behavior for both adsorption and photocatalysis.

Electrogeneration of Hypochlorite Ions using a Dimensionally Stable Anode-Type (Ti/PtPd(10%)Ox) Electrode

  • Teresa Zayas;Miriam Vega;Guillermo Soriano-Moro;Anabella Handal;Miguel Morales;Leonardo Salgado
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.268-275
    • /
    • 2024
  • The study examined the electrogeneration of hypochlorite ions (ClO-) via electrolysis of aqueous NaCl solutions using a dimensionally stable anode-type (DSA-type) electrode based on platinum and palladium oxides supported on titanium mesh (Ti/PtPd(10%)Ox). The electrogenerated ClO- was quantified on the basis of the absorption band at 292 nm (Aλ = 292) of the UV-Vis spectrum. The effect of initial pH, concentration of NaCl, cell potential difference and electrolysis time were investigated in this study. The results showed that the electrolysis of aqueous NaCl solutions increases the solution pH up to high values (≥ 8.0) that favor the formation of ClO- over chlorine or hypochlorous acid. The hypochlorite concentration increases significantly at pH values > 7.0 and shows a linear trend with increasing NaCl concentration and with increasing cell potential difference. When the cell potential and NaCl concentration are held constant, the maximum hypochlorite value during electrolysis depends on both the cell potential and NaCl concentration. The Ti/PtPd(10%)Ox anode favors the production of hypochlorite ions, making this anode a promising material for use in electrochemical oxidation of wastewater via an indirect mechanism.

Supercritical water oxidation of Dimethyl methylphosphonate(DMMP) (Dimethyl methylphosphonate(DMMP)의 초임계수 산화반응)

  • Lee, Hae-Wan;Ryu, Sam-Gon;Lee, Jong-Chol;Hong, Deasik
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.636-643
    • /
    • 2006
  • Supercritical water oxidation of DMMP using continuous flow reactor was studied at temperature ranging from 440 to $540^{\circ}C$ and a fixed pressure of 242 bar. The range of residence times in the reactor was from 10 to 26 s, and oxygen excess value varied from -40 to 200%. Destruction efficiencies (DE) of DMMP were greater than 99.7% at $540^{\circ}C$, and increased as the DMMP concentrations were increased. DE of DMMP were significantly affected by oxygen concentration under stoichiometric amount, but showed little difference over stoichiometric amount. On the basis of 30 data with conversions greater than 85%, kinetic correlations for the DE of DMMP were developed. The pre-exponential factor was $(1.10{\pm}0.76){\times}10^6$, and the activation energy was $90.66{\pm}3.87kJ/mol$, and the reaction orders for DMMP and oxygen were $1.02{\pm}0.03$, $0.32{\pm}0.03$, respectively. The model predictions agreed well with the experimental data.

Effect of Additives on Catalytic Activity in Thermal Catalytic De-NOx Process (Thermal catalytic de-NOX 공정에서 첨가제가 촉매의 활성에 미치는 영향에 관한 연구)

  • 이진구;김태원;최재순;김정호;이재수;장경욱;박해경
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.3
    • /
    • pp.249-255
    • /
    • 1999
  • We sdudied effect of additives on catalytic activity in thermal catalytic de-NOx process which was composed of thermal reduction, catalytic reduction and catalytic oxidation stage. Pd-Pt/${\gamma}$-$Al_2O_3$ catalysts with the addition of transition metals(Co, Cu, Fe, Ni, W, Zn, Zr) and rare earth metals(Ce, Sr) were prepared by the conventional washcoating method. Those catalysts were characterized by CO pulse chemisorption, ICP, $N_2$ adsorption, SEM and XRD. The effect of catalyst additives on NOx removal for diesel emission was studied in thermal catalytic de-NOx process at reduction temperature(350~50$0^{\circ}C$), space velocity(5,000~20,000 $hr^{-1}$) and the engine load(0~120kW). The concentraton of CO, $CO_2$, NO and $NO_2$ in the exhaust gas increased with the engine load. On the other hand the concentration of $O_2$ decreased. The de-NOx activityof all prepared catalysts increased with respect to high CO and low $O_2$ level in the thermal reduction stage of the process. Insertion of Ce to Pt-Pd/${\gamma}$-$Al_2O_3$ catalyst showed the best activity of all the catalysts under these experimental conditions. De-NOx catalysts are effective to remove CO in addition to NOx in the catalytic reduction stage.

  • PDF

Assimilation of Peptides and Amino Acids and Dissimilation of Lactate During Submerged Pure Cultures of Penicillium camembertii and Geotrichum candidum

  • Aziza, M.;Adour, L.;Amrane, A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.124-127
    • /
    • 2008
  • The behavior of Penicillium camembertii and Geotrichum candidum growing in submerged pure cultures on simple (glutamate) or complex (peptones) substrates as nitrogen and carbon sources and lactate as a second carbon source was examined. Similar to the behavior previously recorded on a simple substrate (glutamate), a clear differentiation between the carbon source and the energy source was also shown on peptones and lactate during P. camembertii growth, since throughout growth, lactate was only dissimilated, viz., used for energy supply by oxidation into $CO_2$, whereas peptides and amino acids from peptones were used for carbon (and nitrogen) assimilation. Because of its deaminating activity, G candidum preferred peptides and amino acids to lactate as energy sources, in addition to being assimilated as carbon and nitrogen sources. From this, on peptones and lactate, G candidum grew faster than P. camembertii (0.19 and 0.08 g/l/h, respectively) by assimilating the most readily utilizable peptides and amino acids; however, owing to its lower proteolytic activity, the maximum biomass was lower than that of P. camembertii (3.7 and 5.5 g/l, respectively), for which continuous proteolysis and assimilation of peptides were shown.

Growth Behavial Couctive PolyanilineFilm on a Platinum Electrode by Electrochemical Oxidation (II) (전해산화에 의한 백금전극상 전도성 폴리아닐린 피막의 생장 거동(II))

  • 신성호;이주성
    • Journal of Surface Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.95-102
    • /
    • 1988
  • The anodic oxidation of aniline in aqueous sulfuric acid solution on a platinum was studied. To examine of mechanism of this reaction, the date were obtained during controlled potential electrolysis, aided by computer system. The reaction mechanism was assumed the electrochemical-chemical-electrochemical(ECE) mechanism. We obtained the result that the intial charge transfer step proceeds through a radical cation, and this radical cation were bound cation led to may type of dimer in which p-aminodiphenylamine was de-electronated again to give the polymer.

  • PDF

Ferromagnetic Domain Behaviors in Mn doped ZnO Film

  • Soundararajan, Devaraj;Santoyo-Salazar, Jaime;Ko, Jang-Myoun;Kim, Ki-Hyeon
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.216-219
    • /
    • 2011
  • Mn doped ZnO films were prepared on Si (100) substrates using sol-gel method. The prepared films were annealed at $550^{\circ}C$ for decomposition and oxidation of the precursors. XRD analysis revealed the presence of ZnMnO hexagonal wurtzite phase along with the presence of small quantity of $ZnMn_2O_3$ secondary phase and poor crystalline nature. The 2D, 3D views of magnetic domains and domain profiles were obtained using magnetic force microscopy at room temperature. Rectangular shaped domains with an average size of 4.16 nm were observed. Magnetic moment measurement as a function of magnetic field was measured using superconducting quantum interference device (SQUID) magnetometry at room temperature. The result showed the ferromagnetic hysteresis loop with a curie temperature higher than 300 K.