• Title/Summary/Keyword: de-interlacing

Search Result 45, Processing Time 0.02 seconds

Spatio-Temporal Video De-interlacing Algorithm Based on MAP Estimation (MAP 예측기 기반의 시공간 동영상 순차주사화 알고리즘)

  • Lee, Ho-Taek;Song, Byung-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.69-75
    • /
    • 2012
  • This paper presents a novel de-interlacing algorithm that can make up motion compensation errors by using maximum a posteriori (MAP) estimator. First, a proper registration is performed between a current field and its adjacent fields, and the progressive frame corresponding to the current field is found via MAP estimator based on the computed registration information. Here, in order to obtain a stable solution, well-known bilateral total variation (BTV)-based regularization is employed. Next, so-called feathering artifacts are detected on a block basis effectively. So, edge-directional interpolation is applied to the pixels where feathering artifact may happen, instead of the above-mentioned temporal de-interlacing. Experimental results show that the PSNR of the proposed algorithm is on average 4dB higher than that of previous studies and provides the better subjective quality than the previous works.

The ASIC Design of the Adaptive De-interlacing Algorithm with Improved Horizontal and Vertical Edges (수평 및 수직 윤곽선을 개선한 ADI(Adaptive De-interlacing) 보간 알고리즘의 ASIC 설계)

  • 한병혁;박노경;배준석;박상봉
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.139-142
    • /
    • 2000
  • In this paper, the ADI (Adaptive De-interlacing) algorithm is proposed, which improves visually and subjectively horizontal and vertical edges of the image processed by the ELA(Edge Line-based Average) method. This paper also proposes a VLSI architecture for the proposed algorithm and designed the architecture through the full custom CMOS layout process. The proposed algorithm is verified using C and Matlab and implemented using 0.6$\mu\textrm{m}$ 2-poly 3-metal CMOS standard libraries. For the circuit and logic simulation, Cadence tool is used.

  • PDF

High Performance De-interlacing Algorithm Based on Region Adaptive Interpolation Filter

  • Yang, Yang;Chen, Xiangdong;Wang, Jin;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.200-203
    • /
    • 2011
  • In order to convert interlaced video into progressive scanning format, this paper proposed a high performance de-interlacing algorithm based on region adaptive interpolation filter design. Specifically, usage of the 6-tap filter is only for the most complex region, but for the smooth and regular edge region, much more correlated filter such as 2-tap or 4-tap filter should be used instead. According to the experimental results, the proposed algorithm has achieved noticeably good performance.

  • PDF

A Motion-Adaptive De-interlacing Method using Temporal and Spatial Domain Information (시공간 정보를 이용한 움직임 기반의 De-interlacing 기법)

  • 심세훈;김용하;정제창
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.9-12
    • /
    • 2002
  • In this Paper, we propose an efficient de-interlacing algorithm using temporal and spatial domain information. In the proposed scheme, motion estimation is performed same parity fields, i.e., if current field is even field, reference fields are previous even field and forward even field. And then motion vector refinement is performed to improve the accuracy of motion vectors. In the interpolating step, we use median filter to reduce the interpolation error caused by incorrect motion vector. Simulations conducted for various video sequences have shown the efficiency of the proposed interpolator with significant improvement over previous methods in terms of both PSNR and perceived image quality.

  • PDF

Weighted Distance De-interlacing Algorithm Based on EDI and NAL (EDI와 NAL 알고리듬을 기반으로 한 거리 가중치 비월주사 방식 알고리듬)

  • Lee, Se-Young;Ku, Su-Il;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.704-711
    • /
    • 2008
  • This paper proposes a new de-interlacing method which results in efficient visual improvement. In the proposed algorithm, the distance weight was considered and the previously developed the EDI (Edge Dependent Interpolation) algorithm and the NAL (New Adaptive Linear interpolation) algorithm were used as a basis. The do-interlacing method was divided into two main parts. First, the edge direction was found by using information of closer pixels. Then, missing pixels were interpolated along with the decided edge direction. In this paper, after predicting the edge through the EDI algorithm, missing pixels were interpolated by using the weighted distance based on the NAL algorithm. Experimental results indicate that the proposed algorithm be superior to the conventional algorithms in terms of the objective and subjective criteria.

De-interlacing Algorithm Using Integral Projection-based Motion Estimation Considering Region Of Interest (관심영역 단위의 적분 프로젝션기반 움직임 추정을 사용한 순차주사화 알고리즘)

  • Kim, Young-Duk;Chang, Joon-Young;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.20-29
    • /
    • 2008
  • In this paper, we propose a do-interlacing algorithm using integral projection-based motion estimation considering Region Of Interest(ROI). The proposed motion estimation method finds the motion of the given ROI accurately with low computational cost. In order to incorporate the motion estimation in do-interlacing, an entire image is first segmented into multiple ROIs according to the temporally predicted block-wise motion types and spatial positions. Then, motion vectors of respective ROIs are obtained by the integral projection method. In this paper, totally five ROIs, one for the global motion and four for the local motions, are made, and therefore, five motion vectors are produced for each field. By using the estimated motion vectors, motion compensation is performed for increasing the vortical resolution of the converted frames. Finally, do-interlaced frames are obtained by effectively combining the results of motion compensation and stable intra-field do-interlacing according to the reliability of motion compensation. Experimental results show that the proposed algorithm provides better image quality than existing algorithms in both subjective and objective measures.

A Study on Simple chip Design that Convert Improved YUV signal to RGB signal (개선된 YUV신호를 RGB신호로 변환하는 단일칩 설계에 관한 연구)

  • Lee, Chi-Woo;Park, Sang-Bong;Jin, Hyun-Jun;Park, Nho-Kyung
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.197-209
    • /
    • 2003
  • A current TV out format is quite different from that of HDTV or PC monitor in encoding techniques. In other words, a conventional analog TV uses interlaced display while HDTV or PC monitor uses Non-interlaced / Progressive-scanned display. In order to encode image signals coming from devices that takes interlaced display format for progressive scanned display, a hardware logic in which scanning and interpolation algorithms are implemented is necessary. The ELA(Edge-Based Line Average) algorithm have been widely used because it provided good characteristics. In this study, the ADI(Adaptive De-interlacing Interpolation) algorithm using to improve the ELA algorithm which shows low quality in vertical edge detections and low efficiency of horizontal edge lines. With the De-interlacing ASIC chip that converts the interlaced Digital YUV to De-interlaced Digital RGB is designed. The VHDL is used for chip design.

  • PDF

Fine Directional De-interlacing Algorithm (정교한 방향성을 고려한 디인터레이싱 알고리즘)

  • Park, Sang-Jun;Jin, Soon-Jong;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3C
    • /
    • pp.278-286
    • /
    • 2007
  • In this paper, an efficient algorithm is proposed for the interpolation of interlaced images. First of all, by efficiently estimating the directional spatial correlations of neighboring pixels, increased interpolation accuracy can be achieved. And then using the gradient vector which was obtained by Sobel operation, enables to consider the fine directional edges and make it possible to estimate the accurate direction of edges. In other words, it is possible to interpolate the interlaced images with considering the characteristics of images. In addition, by altering the conventional edge detector for the purpose of a easy De-interlacing and multiplying the optimal translation coefficients to each of the gradient vectors, an efficient interpolation for images can be achieved. Comparing with the conventional De-interlacing algorithms, proposed algorithm not only reduced the complexity but also estimated the accurate edge direction and the proposed scheme have been clearly verified that it enhances the objective and subjective image quality by the extensive simulations for various images.

A study on Improved De-Interlacing Applying Newton Difference Interpolation (Newton 차분법을 이용한 개선된 디인터레이싱 연구)

  • Baek, Kyunghoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.449-454
    • /
    • 2020
  • We propose an improved de-interlacing method that converts the interlaced images into the progressive images by one field. In the first, Inter-pixel values are calculated by applying Newton's forward difference, backward difference interpolation from upper and lower 5 pixel values. Using inter-pixel values obtained from upper and lower 5 pixel values, it makes more accurate a direction estimate by applying the correlation between upper and lower pixel. If an edge direction is determined from the correlation, a missing pixel value is calculated into the average of upper and lower pixel obtained from predicted direction of edge. From simulation results, it is shown that the proposed method improves subjective image quality at edge region and objective image quality at 0.2~0.3dB as quantitative calculation result of PSNR, compared to previous various de-interlacing methods.

De-interlacing and Block Code Generation For Outsole Model Recognition In Moving Picture (동영상에서 신발 밑창 모델 인식을 위한 인터레이스 제거 및 블록 코드 생성 기법)

  • Kim Cheol-Ki
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.33-41
    • /
    • 2006
  • This paper presents a method that automatically recognizes products into model type, which it flows with the conveyor belt. The specific interlaced image are occurred by moving image when we use the NTSC based camera. It is impossible to process interlaced images, so a suitable post-processing is required. For the purpose of this processing, after it remove interlaced images using de-interlacing method, it leads rectangle region of object by thresholding. And then, after rectangle region is separated into several blocks through edge detection, we calculate pixel numbers per each block, re-classify using its average, and classify products into model type. Through experiments, we know that the proposed method represent high classification ratio.

  • PDF