• 제목/요약/키워드: de-differentiation

검색결과 104건 처리시간 0.026초

탈분화의 공간적 반영 - 제주관광을 사례로 - (Issues on Spatial Reflection of De-differentiation in Jeju Island)

  • 오정준
    • 대한지리학회지
    • /
    • 제39권3호
    • /
    • pp.391-408
    • /
    • 2004
  • 자기정당화를 통한 사회 각 부문의 분화가 현대성의 특징이었다면, 탈현대성 혹은 포스트모더니즘에서는 사회 각 부문의 경계가 소멸되는 탈분화가 진행되고 있다. 이러한 탈분화는 작금의 관광현상을 통해 가장 극명하게 나타나고 있다. 사회의 각 부문과 관광과의 경계가 소멸됨으로써 관광은 단순히 ‘보는 행위’ 행위에서 벗어나 경제적, 문화적, 환경적, 교육적 활동들을 수반하게 되고, 즐거움의 추구보다는 교육적이고 자기 계발적인 방향으로 전환되고 있다. 관광에서의 이러한 탈분화는 다시 공간적으로 반영됨으로써 지역주민의 일상공간과 관광객이 방문하는 관광공간과의 중첩이 나타날 수 있다. 이에 본 연구에서는 제주도를 연구지역으로 하여 관광과 사회 각 부문과의 탈분화를 통해 나타나는 탈현대적 관광의 특징을 분석하고, 그것이 공간적으로 반영되는 양상을 기술하는데 목적을 두고 있다. 연구지역의 경우 현대적 관광의 시기에서는 자연관광자원 위주의 색다른 장소를 중심으로 관광지가 형성됨으로써 해안지역에 관광지가 집중되는 양상이 나타났다. 그러나 탈현대적 관광의 시기에서는 관광객들의 특정한 기호를 중심으로 관광지가 형성됨으로써 제주도민의 생활과 매우 밀접한 장소가 관광지로 형성되고 있다. 그 결과 기존의 해안중심에서 중산간 지역으로의 수직적 확산과 서부 및 동부중산간 지역으로의 수평적 확산이 나타나고 있다.

한국 박물관의 역사적 변천에서 나타나는 근대성과 탈근대성 (Modernism and Postmodernism of the Korean Museum in Historical Development)

  • 강창숙
    • 한국지역지리학회지
    • /
    • 제10권4호
    • /
    • pp.833-850
    • /
    • 2004
  • 사회 각 부문의 이분법적인 분화가 근대성의 특징이었다면, 탈근대성 혹은 포스트모더니즘에서는 경계가 소멸되고 다양화되는 탈분화가 진행된다. 최근의 박물관들은 단순히 유물을 보관하는 근대적 공간에서 벗어나 여러 가지 사회문화적 요구를 수용하는 기능적 공간으로 탈근대화 되고 있다. 근대적 공간으로 탄생한 한국의 박물관이 문화 경관으로서 탈근대화 되는 양상을 알기 위해서는 역사적 형성 과정을 살펴보는 것이 필요하다. 이에 본 연구는 한국 박물관의 역사적 변천에서 나타나는 근대성과 탈근대성을 분화와 탈분화의 관점에서 살펴보았다. 이를 위해서 설립 주체의 유형별 변화를 토대로 한국 박물관의 역사적 변천과정을 근대적 박물관의 설립기(1945$\sim$1974), 탈근대적 박물관의 설립기(1975$\sim$1989), 탈근대적 박물관의 확산기(1990$\sim$2003)의 세 시기로 구분하여 분화와 탈분화의 양상을 살펴보았다.

  • PDF

IPA and its precursors differently modulate the proliferation, differentiation, and integrity of intestinal epithelial cells

  • Shamila Ismael;Catarina Rodrigues ;Gilberto Maia Santos ;Ines Castela ;Ines Barreiros-Mota ;Maria Joao Almeida ;Conceicao Calhau ;Ana Faria ;Joao Ricardo Araujo
    • Nutrition Research and Practice
    • /
    • 제17권4호
    • /
    • pp.616-630
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Indole-3-propionic acid (IPA) is a tryptophan-derived microbial metabolite that has been associated with protective effects against inflammatory and metabolic diseases. However, there is a lack of knowledge regarding the effects of IPA under physiological conditions and at the intestinal level. MATERIALS/METHODS: Human intestinal epithelial Caco-2 cells were treated for 2, 24, and/or 72 h with IPA or its precursors - indole, tryptophan, and propionate - at 1, 10, 100, 250, or 500 μM to assess cell viability, integrity, differentiation, and proliferation. RESULTS: IPA induced cell proliferation and this effect was associated with a higher expression of extracellular signal-regulated kinase 2 (ERK2) and a lower expression of c-Jun. Although indole and propionate also induced cell proliferation, this involved ERK2 and c-Jun independent mechanisms. On the other hand, both tryptophan and propionate increased cell integrity and reduced the expression of claudin-1, whereas propionate decreased cell differentiation. CONCLUSIONS: In conclusion, these findings suggested that IPA and its precursors distinctly contribute to the proliferation, differentiation, and barrier function properties of human intestinal epithelial cells. Moreover, the pro-proliferative effect of IPA in intestinal epithelial cells was not explained by its precursors and is rather related to its whole chemical structure. Maintaining IPA at physiological levels, e.g., through IPA-producing commensal bacteria, may be important to preserve the integrity of the intestinal barrier and play an integral role in maintaining metabolic homeostasis.

Th17 Cell and Inflammatory Infiltrate Interactions in Cutaneous Leishmaniasis: Unraveling Immunopathogenic Mechanisms

  • Abraham U. Morales-Primo;Ingeborg Becker;Claudia Patricia Pedraza-Zamora;Jaime Zamora-Chimal
    • IMMUNE NETWORK
    • /
    • 제24권2호
    • /
    • pp.14.1-14.26
    • /
    • 2024
  • The inflammatory response during cutaneous leishmaniasis (CL) involves immune and non-immune cell cooperation to contain and eliminate Leishmania parasites. The orchestration of these responses is coordinated primarily by CD4+ T cells; however, the disease outcome depends on the Th cell predominant phenotype. Although Th1 and Th2 phenotypes are the most addressed as steers for the resolution or perpetuation of the disease, Th17 cell activities, especially IL-17 release, are recognized to be vital during CL development. Th17 cells perform vital functions during both acute and chronic phases of CL. Overall, Th17 cells induce the migration of phagocytes (neutrophils, macrophages) to the infection site and CD8+ T cells and NK cell activation. They also provoke granzyme and perforin secretion from CD8+ T cells, macrophage differentiation towards an M2 phenotype, and expansion of B and Treg cells. Likewise, immune cells from the inflammatory infiltrate have modulatory activities over Th17 cells involving their differentiation from naive CD4+ T cells and further expansion by generating a microenvironment rich in optimal cytokines such as IL-1β, TGF-β, IL-6, and IL-21. Th17 cell activities and synergies are crucial for the resistance of the infection during the early and acute stages; however, if unchecked, Th17 cells might lead to a chronic stage. This review discusses the synergies between Th17 cells and the inflammatory infiltrate and how these interactions might destine the course of CL.

Generation of Urothelial Cells from Mouse-Induced Pluripotent Stem Cells

  • Dongxu Zhang;Fengze Sun;Huibao Yao;Di Wang;Xingjun Bao;Jipeng Wang;Jitao Wu
    • International Journal of Stem Cells
    • /
    • 제15권4호
    • /
    • pp.347-358
    • /
    • 2022
  • Background and Objectives: The search for a suitable alternative for urethral defect is a challenge in the field of urethral tissue engineering. Induced pluripotent stem cells (iPSCs) possess multipotential for differentiation. The in vitro derivation of urothelial cells from mouse-iPSCs (miPSCs) has thus far not been reported. The purpose of this study was to establish an efficient and robust differentiation protocol for the differentiation of miPSCs into urothelial cells. Methods and Results: Our protocol made the visualization of differentiation processes of a 2-step approach possible. We firstly induced miPSCs into posterior definitive endoderm (DE) with glycogen synthase kinase-3𝛽 (GSK3𝛽) inhibitor and Activin A. We investigated the optimal conditions for DE differentiation with GSK3𝛽 inhibitor treatment by varying the treatment time and concentration. Differentiation into urothelial cells, was directed with all-trans retinoic acid (ATRA) and recombinant mouse fibroblast growth factor-10 (FGF-10). Specific markers expressed at each stage of differentiation were validated by flow cytometry, quantitative real-time polymerase chain reaction (qRT-PCR) assay, immunofluorescence staining, and western blotting Assay. The miPSC-derived urothelial cells were successfully in expressed urothelial cell marker genes, proteins, and normal microscopic architecture. Conclusions: We built a model of directed differentiation of miPSCs into urothelial cells, which may provide the evidence for a regenerative potential of miPSCs in preclinical animal studies.

Influence of $1{\alpha}$, 25-dihydroxyvitamin $D_3$ [1, $25(OH)_2D_3$] on the expression of Sox 9 and the transient receptor potential vanilloid 5/6 ion channels in equine articular chondrocytes

  • Hdud, Ismail M.;Loughna, Paul T.
    • Journal of Animal Science and Technology
    • /
    • 제56권8호
    • /
    • pp.33.1-33.8
    • /
    • 2014
  • Background: Sox 9 is a major marker of chondrocyte differentiation. When chondrocytes are cultured in vitro they progressively de-differentiate and this is associated with a decline in Sox 9 expression. The active form of vitamin D, 1, 25 $(OH)_2D_3$ has been shown to be protective of cartilage in both humans and animals. In this study equine articular chondrocytes were grown in culture and the effects of 1, 25 $(OH)_2D_3$ upon Sox 9 expression examined. The expression of the transient receptor potential vanilloid (TRPV) ion channels 5 and 6 in equine chondrocytes in vitro, we have previously shown, is inversely correlated with de-differentiation. The expression of these channels in response to 1, 25 $(OH)_2D_3$ administration was therefore also examined. Results: The active form of vitamin D (1, 25 $(OH)_2D_3$ when administered to cultured equine chondrocytes at two different concentrations significantly increased the expression of Sox 9 at both. In contrast 1, 25 $(OH)_2D_3$ had no significant effect upon the expression of either TRPV 5 or 6 at either the protein or the mRNA level. Conclusions: The increased expression of Sox 9, in equine articular chondrocytes in vitro, in response to the active form of vitamin D suggests that this compound could be utilized to inhibit the progressive de-differentiation that is normally observed in these cells. It is also supportive of previous studies indicating that $1{\alpha}$, 25-dihydroxyvitamin $D_3$ can have a protective effect upon cartilage in animals in vivo. The previously observed correlation between the degree of differentiation and the expression levels of TRPV 5/6 had suggested that these ion channels may have a direct involvement in, or be modulated by, the differentiation process in vitro. The data in the present study do not support this.

MicroRNA analysis reveals the role of miR-214 in duck adipocyte differentiation

  • Wang, Laidi;Hu, Xiaodan;Wang, Shasha;Yuan, Chunyou;Wang, Zhixiu;Chang, Guobin;Chen, Guohong
    • Animal Bioscience
    • /
    • 제35권9호
    • /
    • pp.1327-1339
    • /
    • 2022
  • Objective: Fat deposition in poultry is an important factor in production performance and meat quality research. miRNAs also play important roles in regulating adipocyte differentiation process. This study was to investigate the expression patterns of miRNAs in duck adipocytes after differentiation and explore the role of miR-214 in regulating carnitine palmitoyltransferases 2 (CPT2) gene expression during duck adipocyte differentiation. Methods: Successful systems for the isolation, culture, and induction of duck primary fat cells was developed in the experiment. Using Illumina next-generation sequencing, the miRNAs libraries of duck adipocytes were established. miRanda was used to predict differentially expressed (DE) miRNAs and their target genes. The expression patterns of miR-214 and CPT2 during the differentiation were verified by quantitative real-time polymerase chain reaction and western blot. Luciferase reporter assays were used to explore the specific regions of CPT2 targeted by miR-214. We used a miR-214 over-expression strategy in vitro to further investigate its effect on differentiation process and CPT2 gene transcription. Results: There were 481 miRNAs identified in duck adipocytes, included 57 DE miRNA candidates. And the 1,046 targets genes of DE miRNAs were mainly involved in p53 signaling, FoxO signaling, and fatty acid metabolism pathways. miR-214 and CPT2 showed contrasting expression patterns before and after differentiation, and they were selected for further research. The expression of miR-214 was decreased during the first 3 days of duck adipocytes differentiation, and then increased, while the expression of CPT2 increased both in the transcriptional and protein level. The luciferase assay suggested that miR-214 targets the 3'untranslated region of CPT2. Overexpression of miR-214 not only promoted the formation of lipid droplets but also decreased the protein abundance of CPT2. Conclusion: Current study reports the expression profile of miRNAs in duck adipocytes differentiated for 4 days. And miR-214 has been proved to have the regulator potential for fat deposition in duck.

Adipose Tissue-Derived Mesenchymal Stromal Cells from Ex-Morbidly Obese Individuals Instruct Macrophages towards a M2-Like Profile In Vitro

  • Daiana V. Lopes Alves;Cesar Claudio-da-Silva;Marcelo C. A. Souza;Rosa T. Pinho;Wellington Seguins da Silva;Periela S. Sousa-Vasconcelos;Radovan Borojevic;Carmen M. Nogueira;Helio dos S. Dutra;Christina M. Takiya;Danielle C. Bonfim;Maria Isabel D. Rossi
    • International Journal of Stem Cells
    • /
    • 제16권4호
    • /
    • pp.425-437
    • /
    • 2023
  • Obesity, which continues to increase worldwide, was shown to irreversibly impair the differentiation potential and angiogenic properties of adipose tissue mesenchymal stromal cells (ADSCs). Because these cells are intended for regenerative medicine, especially for the treatment of inflammatory conditions, and the effects of obesity on the immunomodulatory properties of ADSCs are not yet clear, here we investigated how ADSCs isolated from former obese subjects (Ex-Ob) would influence macrophage differentiation and polarization, since these cells are the main instructors of inflammatory responses. Analysis of the subcutaneous adipose tissue (SAT) of overweight (OW) and Ex-Ob subjects showed the maintenance of approximately twice as many macrophages in Ex-Ob SAT, contained within the CD68+/FXIII-A- inflammatory pool. Despite it, in vitro, coculture experiments revealed that Ex-Ob ADSCs instructed monocyte differentiation into a M2-like profile, and under inflammatory conditions induced by LPS treatment, inhibited HLA-DR upregulation by resting M0 macrophages, originated a similar percentage of TNF-α+ cells, and inhibited IL-10 secretion, similar to OW-ADSCs and BMSCs, which were used for comparison, as these are the main alternative cell types available for therapeutic purposes. Our results showed that Ex-Ob ADSCs mirrored OW-ADSCs in macrophage education, favoring the M2 immunophenotype and a mixed (M1/M2) secretory response. These results have translational potential, since they provide evidence that ADSCs from both Ex-Ob and OW subjects can be used in regenerative medicine in eligible therapies. Further in vivo studies will be fundamental to validate these observations.

Dynamic Routing and Spectrum Allocation with Traffic Differentiation to Reduce Fragmentation in Multifiber Elastic Optical Networks

  • ZOUNEME, Boris Stephane;ADEPO, Joel;DIEDIE, Herve Gokou;OUMTANAGA, Souleymane
    • International Journal of Computer Science & Network Security
    • /
    • 제21권3호
    • /
    • pp.1-10
    • /
    • 2021
  • In recent decades, the heterogeneous and dynamic behavior of Internet traffic has placed new demands on the adaptive resource allocation of the optical network infrastructure. However, the advent of multifiber elastic optical networks has led to a higher degree of spectrum fragmentation than conventional flexible grid networks due to the dynamic and random establishment and removal of optical connections. In this paper, we propose heuristic routing and dynamic slot allocation algorithms to minimize spectrum fragmentation and reduce the probability of blocking future connection requests by considering the power consumption in elastic multifiber elastic optical networks.