• Title/Summary/Keyword: dc-sputtering

Search Result 1,034, Processing Time 0.026 seconds

DC Reactive Magnetron Co-Sputtering 방법을 이용한 Cu-TiN Composite 박막 증착

  • Jang, Jin-Hyeok;Kim, Gyeong-Hun;Kim, Seong-Min;Han, Seung-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.195.1-195.1
    • /
    • 2013
  • Cu는 금속 박막재료로서 높은 전기전도성을 지니고 있을 뿐만 아니라 Ag, Al, Pt 등 보다 비용이 저렴하여, 높은 전기전도성을 필요로 하는 박막 재료로써 폭넓게 사용되고 있다. 그러나, 낮은 기계적 특성을 지니고 있어서 interconnect와 같은 작은 단면적의 배선재료로 사용될 경우, 높은 전류밀도에 따른 electromigration 현상에 의하여 hillock 또는 void의 형성 등 박막재료의 변형이 생기게 되어서 전자소자의 수명이 단축된다는 단점이 있다. TiN은 금속재료 못지않은 높은 전기 전도성을 지니고 있을 뿐만 아니라, 금속재료에 비하여 높은 기계적 특성과 녹는점을 지니고 있어 다양한 분야로 사용되고 있다. 본 연구에서는 Cu와 TiN composite 박막을 soda-lime glass위에 증착하여 낮은 비저항 뿐만 아니라 Cu와 비교하여 기계적 특성이 향상된 박막을 제작하고자 하였다. Cu와 TiN composite 박막 증착을 위하여 DC reactive magnetron co-sputtering 장비를 사용하였으며, Cu와 Ti 타겟 power, Ar:N2 유량비(Flow rate)을 변화시켜 Cu와 Ti의 조성비 및 TiN의 결정성을 조절하였고, 이를 통하여 박막의 TiN 조성에 따른 낮은 비저항 값과 순수한 Cu 박막과 비교하여 높은 기계적 특성을 지닌 Cu-TiN 박막을 증착하였다. Cu-TiN composite 박막의 구조 및 조성은 SEM (Scanning Electron Microscope), EDS (Energy Dispersive Spectrometer), XPS (X-ray Photoelectron Spectroscopy)장비를 사용하여 분석하였으며, 전기전도도는 4-point probe를 사용하여 측정하였고, Knoop hardness 측정방법을 사용하여 박막의 기계적 특성을 측정하였다.

  • PDF

A Study on the Tribological Characteristics of AL7075-T7351 Aluminum Alloy Coated with TiN Nano Thin Film (TiN 나노 박막을 코팅한 AL7075-T7351 알루미늄 합금의 트라이볼로지 특성에 관한 연구)

  • Kwang-Su Kim;Sung-Hoon Im;Do-Hyeon Kim;Hyeong-Jun Park;Sun-Cheol Huh
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.743-750
    • /
    • 2023
  • Aluminum alloy is a material widely used in the aircraft industry. However, since it has relatively low hardness, strength and tribological properties, it is necessary to improve these properties. In this paper, a TiN thin film was coated on the surface of AL7075-T7351 using DC magnetron sputtering. The coating was performed by setting different deposition pressure, deposition time, and applied power. Then, the tribological properties of the thin film were investigated. As a result of the experiment, the hardness of the thin film was higher than that of the base material, and the specimen with the highest hardness had excellent friction coefficient, wear amount, and adhesive strength characteristics. Through this study, it was confirmed that the tribological characteristics of aluminum alloy can be improved by depositing thin films using DC magnetron sputtering.

Anti-Reflection Coating Application of SixOy-SixNy Stacked-Layer Fabricated by Reactive Sputtering (반응성 스퍼터링으로 제작된 SixOy-SixNy 적층구조의 반사방지 코팅 응용)

  • Gim, Tzang-Jo;Lee, Boong-Joo;Shina, Paik-Kyun
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.341-346
    • /
    • 2010
  • In this paper, anti-reflection coating was investigated for decreasing the reflection in visible range of 400~650 [nm] through four staked layers of $Si_xO_y$ and $Si_xN_y$ thin films prepared by reactive sputtering method. Si single crystal of 6 [inch] diameter was used as a sputtering target. Ar and $O_2$ gases were used as sputtering gases for reactive sputtering for the $Si_xO_y$ thin film, and Ar and $N_2$ gases were used for reactive sputtering for the $Si_xN_y$ thin film. DC pulse power of 1900 [W] was used for the reactive sputtering. Refractive index and deposition rate were 1.50 and 2.3 [nm/sec] for the $Si_xO_y$, and 1.94 and 1.8 [nm/sec] for the $Si_xN_y$ thin film, respectively. Considering the simulation of the four layer anti-reflection coating structure with the above mentioned films, the $Si_xO_y-Si_xN_y$ stacked four-layer structure was prepared. The reflection measurement result for that structure showed that a "W" shaped anti-reflection was obtained successfully with a reflection of 1.7 [%] at 550 [nm] region and a reflection of 1 [%] at 400~650 [nm] range.

The characteristics of Pt thin films prepared by DC magnetron sputter (DC Magnetron Sputter로 제조된 Pt 박막의 특성)

  • Na, Dong-Myong;Kim, Young-Bok;Park, Jin-Seong
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.159-164
    • /
    • 2007
  • Thin films of platinum were deposited on a $Al_{2}O_{3}/ONO(SiO_{2}-Si_{3}N_{4}-SiO_{2})/Si$-substrate with an 2-inch Pt(99.99 %) target at room temperature for 20, 30 and 60 min by DC magnetron sputtering, respectively X-ray diffract meter (XRD) was used to analyze the crystallanity of the thin films and field emission scanning electron microscopy (FE-SEM) was employed for the investigation on crystal growth. The densification and the grain growth of the sputtered films have a considerable effect on sputtering time and annealing temperatures. The resistance of the Pt thin films was decreased with increasing deposition time and sintering temperature. Pt micro heater thin film deposited for 60 min by DC magnetron sputtering on an $Al_{2}O_{3}$/ONO-Si substrate and annealed at $600^{\circ}C$ for 1 h in air is found to be a most suitable micro heater with a generation capacity of $350^{\circ}C$ temperature and 645 mW power at 5.0 V input voltage. Adherence of Pt thin film and $Al_{2}O_{3}$ substrate was also found excellent. This characteristic is in good agreement with the uniform densification and good crystallanity of the Pt film. Efforts are on progress to find the parameters further reduce the power consumption and the results will be presented as soon as possible.

A Study on the Deposition Conditions of the TiNi Thin Film by DC Magnetron Sputtering (DC 마그네트론 스퍼터링법에 의해 제조한 TiNi 박막의 증착조건에 관한 연구)

  • Choi, Dae-Cheol;Han, Beom-Gyo;Nam, Tae-Hyun;Ahn, Hyo-Jun
    • Journal of Hydrogen and New Energy
    • /
    • v.10 no.4
    • /
    • pp.211-217
    • /
    • 1999
  • In order to investigate the possibilities of microbatteries using TiNi type metal hydride, TiNi films were prepared by DC magnetron sputtering. The films were deposited under various Ar flow rates, DC powers and target-to-substrate distances to find the optimum sputtering conditions. The deposition rate of TiNi thin film increased by increasing the DC power and by decreasing the Ar flow rate and target-to-substrate distance. The chemical composition of the film changed as a target-to-substrate distance. The crystal structure of the film was amorphous state just after deposition and changed to crystalline by vacuum heat treatment.

  • PDF

A Study on Photocatalytic Degradation Properties by Oxygen Partial Pressure for Tio2Thin Films Fabricated by DC Magnetron Sputtering (DC 마그네트론 스퍼터링법으로 제조된 Tio2 박막의 산소분압비에 따른 광분해 특성에 관한 연구)

  • Jeong, W.J.;Park, J.Y.;Park, G.C.
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.226-230
    • /
    • 2005
  • This paper describes the photocatalytic degradation properties by oxygen partial pressure for TiO$_2$ thin films fabricated by dc magnetron reactive sputtering. And the structural, chemical, optical and photocatalytic properties were investigated at various analysis system. When TiO$_2$ thin film was made at deposition time of 120 min and Ar:O$_2$ ratio of 60:40, the best properties were obtained. That results were as follows: thickness; 360∼370 nm, gram size; 40 nm, optical energy band gap; 3.4 eV and Benzene conversion in the photocatalytic degradation; 11 %.

Effect of substrate temperature on the properties of aluminum doped zinc oxide by DC magnetron sputtering

  • Koo, Hong-Mo;Kim, Se-Hyun;Moon, Yeon-Keon;Park, Jong-Wang;Jeong, Chang-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1542-1545
    • /
    • 2005
  • Transparent conducting aluminum-doped zinc oxide (AZO) thin films have been deposited on corning 1737 glass by DC magnetron sputter. The structural, electrical and optical properties of the films were investigated as a function of various substrate temperatures. AZO thin films were fabricated by dc magnetron sputtering with AZO ceramic target $(Al_2O_3: 2wt %)$. The obtained films were poly crystalline with a hexagonal wurtzite structure and preferentially oriented in the (002) crystallographic direction. The lowest resistivity is $6.0{\times}10^{-4}$ Ocm with the carrier concentration of $2.694{\times}10^{20}\;cm^{-3}$ and Hall mobility of $20.426cm^2/Vs$. The average transmittance in the visible range was above 90%.

  • PDF