• Title/Summary/Keyword: dc-side voltage unbalance

Search Result 11, Processing Time 0.03 seconds

Control of DC-side Voltage Unbalance among Phases in Multi-level H-Bridge STATCOM with Unbalanced Load (불평형부하를 가지는 다단 H-bridge STATCOM에서 상간 직류전압 불평형의 제어)

  • Kwon, Byung-Ki;Jung, Seung-Ki;Kim, Tae-Hyeong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.332-341
    • /
    • 2014
  • A cascaded H-bridge multi-level STATCOM(STATic synchronous COMpensator), which is composed of many cell inverters with independent dc-sources, generates inevitably dc-side voltage unbalance among phases when it compensates unbalanced load. It comes from the difference of flowing active power in each phase when this compensator makes negative-sequence current to eliminate the unbalance of source-side current. However, this unbalance can be controlled by injecting zero-sequence current which is decoupled with grid currents, so the compensator can work well during this balancing process. Both a feedback control algorithm, which produces zero-sequence current proportional to dc-side voltage unbalance within each phase, and a feedforward control algorithm, which makes zero-sequence current directly from the compensator's negative-sequence current, were proposed. The dc-side voltage of each phase can be controlled stably by these proposed algorithms in both steady-state and transient, so the compensator can have fast response to satisfy control performance under rapid changing load. These balancing controllers were implemented and verified via simulation and experiment.

Input Current Characteristics of a Three-Phase Diode Rectifier with Capacitive Filter Under Line Voltage Unbalance Condition

  • Jeong Seung-Gi;Lee Dong-Ki;Park Ki-Won
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.808-815
    • /
    • 2001
  • The three-phase diode rectifier with a capacitive filter is highly sensitive to line voltage unbalance, and may cause significantly unbalanced line currents even under slightly unbalanced voltage condition. This paper presents an analysis of this 'unbalance amplification' effect for an ideal rectifier circuit without ac-and dc-side inductors. The voltage unbalance is modeled by introducing a deviation voltage superimposed on balanced three-phase line voltages. With proper approximations, closed-form expressions for symmetrical components of the line current and current unbalance factor are derived in terms of the voltage unbalance factor, filter reactance, and load current. The validity of analytical predictions is confirmed by simulation.

  • PDF

Improved dc-link capacitor voltage control of Distribution Static Compensator (배전용 정지형 보상기의 개선된 직류단 커패시터 전압제어)

  • Kim, Ho-Yeol;Choi, Jong-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.466-467
    • /
    • 2010
  • Researches about DSTATCOM are mainly divided two parts, one is the calculation of the load-side average active power and dc-link capacitor average voltage, the other part is the current control. This paper proposes a calculation of dc-link capacitor average voltage using improved method instead of conventional method using LPF (low pass filter). Through the theoretical analysis and simulation under unbalance loads and non-linear load, the proposed method is verified.

  • PDF

DC-Link Voltage Control of Distribution Static Compensator using Ripple Voltage Extraction (맥동 전압 추출을 통한 배전용 정지형 보상기의 직류링크 전압제어)

  • Kim, Ho-Yeol;Choi, Jong-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.8-13
    • /
    • 2012
  • DSTATCOM is active filter that reduces nonlinear and unbalanced currents. Researches about DSTATCOM are mainly divided two parts, one is the reference value calculation of compensation current depending on the calculation of the load-side average active power and dc-link capacitor average voltage, the other part is actual current control depending on the reference value of compensation current. This paper proposes a calculation of dc-link capacitor average voltage ripple voltage extraction instead of conventional method using LPF. The utility of the proposed algorithm is verified through the theoretical analysis and the experiment under unbalance loads and non-linear load.

Manufacture and operation of test facilities for energy regenerating system (회생제동 인버터 시험설비의 제작 및 시험)

  • Yang, Young-Chul;Park, Jong-Phil;Han, Moon-Sub;Kim, Ju-Rak;Kim, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.852-857
    • /
    • 2007
  • For electric traction using a large power converter, harmonic problem in the p-ower quality and regenerating energy in side of efficiency are important. Recently, by advance in power electronics technology, some countries are considering regenerative inverter from the points of view. when the electric tractions are stopped or driven through the falling slope way, it is very useful to supply surplus energy to the power source by regenerating system in the efficient side of energy and it is very economical. these regenerating energy are supported electrical equipment through DC line. In this research, the purposes are suppressing extra DC-line voltage and saving energy generated while electric traction is been driving on the falling slope way or reducing speed for railway using a 1500V DC-voltage. Besides, the accompanied defects of current distortion, low power factor and the voltage unbalance will be solved by developing the algorism of inverter having ability to compensate current harmonic.

  • PDF

A Novel Three Level DC/DC Converter for High power applications operating from High Input Voltage (대용량 및 높은 입력전압에 적합한 새로운 Three Level DC/DC 컨버터)

  • Han S.K.;Oh W.S.;Moon G.W.;Youn M.J.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.317-322
    • /
    • 2003
  • A novel three-level DC/DC converter (TLC)for high power applications operating from high input voltage Is proposed. Its switch voltage stress can be ensured to be only one-half of the Input voltage. Nevertheless, since all input voltage is applied to the transformer primary side, it has good turns ratio. The driving method of each module is same as those of the conventional phase-shifted ZVS full bridge PWM converter (PSFB) and the zero-voltage-switching (ZVS) of the leading leg are achieved exactly in the same manner as that of the PSFB. Moreover, its three-level operation can considerably reduce the current ripple through the output inductor and it has no problems of the DC-link voltage unbalance. Therefore, it features a low voltage stress, high efficiency, low EMI, high power density, and small sized filter. To confirm the operation, validity, and features of the proposed circuit, experimental results from a 200W, 600V/DC-48V/DC prototype are presented.

  • PDF

Enhancement of Cell Voltage Balancing Control by Zero Sequence Current Injection in a Cascaded H-Bridge STATCOM (STATCOM에서 영상분 전류주입에 의한 셀간 전압평형화 제어의 향상)

  • Kwon, Byung-Ki;Jung, Seung-Ki;Kim, Tae-Hyeong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.321-329
    • /
    • 2015
  • The static synchronous compensator (STATCOM) of cascaded H-bridge configuration accompanying multiple separate DC sides is inherently subject to the problem of uneven DC voltages. These DC voltages in one leg can be controlled by adjusting the AC-side output voltage of each cell inverter, which is proportional to the active power. However, when the phase current is extremely small, large AC-side voltage is required to generate the active power to balance the cell voltages. In this study, an alternative zero-sequence current injection method is proposed, which facilitates effective cell balancing controllers at no load, and has no effect on the power grid because the injected zero sequence current only flows within the STATCOM delta circuit. The performance of the proposed method is verified through simulation and experiments.

A Compensation Method considering Unbalance of Reactor at Source Side in Driving 3 Phase Voltage type PWM Converter (3상 전압형 PWM 컨버터 운전시 전원측 리액터의 불평형을 고려한 보상법)

  • Chun, Ji-Yong;Lee Sa-Young;Cho Yu-Hwan;Lee Geun-Hong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.373-379
    • /
    • 2005
  • In this paper, the control algorithm of DC source device for inverter starting is proposed and the control method for compensating unbalance system source on operating time in the voltage type PWM converter with driving and regenerative faculty is suggested. The maintaining way of balancing condition for converter of AC source is used the compensating unbalanced status by current control loop. Because it is possible that the unbalanced System control is used to leakage transformer not equaled reactance by each phase in rectifier system, the proposed H/W and control algorithm of rectifier system is contributed to minimize of device and rising efficiency.

Novel Switching Strategy of 1MVar STATCON using Cascade Multilevel Voltage Source Inverter for FACTS Application (FACTS 적용을 위한 직렬형 멀티레벨 전압형 인버터를 사용한 1MVar STATCON의 새로운 스위칭기법)

  • Min, Wan-Gi;Min, Jun-Gi;Choe, Jae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.12
    • /
    • pp.691-700
    • /
    • 1999
  • This paper proposes a novel switching strategy of 1Mvar STATCON using cascade multilevel H-bridge inverter(HBI) for FACTS application. To control the reactive power instantaneously, the d-q dynamic system model is described and analyzed. A single pulse pattern based on the SHEM(Selective Harmonic Elimination Method) technique is determined from the look-up table to reduce the line current harmonics and a rotating fundamental frequency switching scheme is presented to adjust the DC voltage of each inverter capacitor at the same value. So the voltage unbalance problem between separately DC bus voltage is improved by using the proposed switching scheme. As a result, the presented inverter configuration not only reduces the system complexity by eliminating the isolation at the AC input side transformer but also improves the dynamic response to the step change of reactive power.

  • PDF

The Implementation of Current Compensation Controller in Driving Voltage type Converter considering the Unbalance of Reactor at the Source Side (전원측 리액터 불평형을 고려한 전압형 컨버터의 전류 보상 제어기 구현)

  • Chun Ji-Yong;Cho Yu-Hwan;Lee Geun-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.5
    • /
    • pp.413-420
    • /
    • 2004
  • In this paper, the control algorithm of DC source device for inverter starting is proposed and the control method for compensating unbalance system source on operating time in the voltage type PWM converter with driving and regenerative faculty is suggested. The maintaining method of balancing condition for converter of AC source is used the compensating unbalanced status by current control loop. In order to solve the problem which the unbalanced system control is used to leakage transformer not equaled reactance by each phase in rectifier system. The proposed H/W and control algorithm of rectifier system is contributed to minimize of device and rising efficiency.

  • PDF