• Title/Summary/Keyword: dc microgrid

Search Result 86, Processing Time 0.025 seconds

DC-Voltage Regulation for Solar-Variable Speed Hybrid System

  • Niyitegeka, Gedeon;Lee, Kyungkyu;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.123-124
    • /
    • 2015
  • Recently interest on DC systems has been grown up extensively for more efficient connection with renewable energy. During the operation, there happens DC_link voltage variations. This paper focuses on the DC voltage stabilization applied in stand-alone DC microgrid to improve the system stability by keeping the voltage within limits. Batteries and a variable speed diesel generator cover the shortage of power after all available renewable energy is consumed. Load shedding or power generation reduction should automatically takes place if the maximum tolerable voltage variation is exceeded. PSIM based simulation results are presented to evaluate the performance of the proposed control measures.

  • PDF

Development of Hardware In-the-Loop Simulation System for Testing Power Management of DC Microgrids Based on Decentralized Control (분산제어 기반 직류 마이크로그리드 전력관리시스템의 HIL 시뮬레이션 적용 연구)

  • To, Dinh-Du;Le, Duc-Dung;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.191-200
    • /
    • 2019
  • This study proposes a hardware-in-the-loop simulation (HILS) system based on National Instruments' PXI platform to test power management and operation strategies for DC microgrids (MGs). The HILS system is developed based on the controller HIL prototype, which involves testing the controller board in hardware with a real-time simulation model of the plant in a real-time digital simulator. The system provides an economical and effective testing function for research on MG systems. The decentralized power management strategy based on the DC bus signaling method for DC MGs has been developed and implemented on the HILS platform. HILS results are determined to be similar to those of the off-line simulation in PSIM software.

Hierarchical Control based on State-of-Charge of Battery Energy Storage System in DC Microgrid (DC 마이크로그리드에서 배터리 에너지 저장장치의 State-of-Charge 기반 계층 제어 기법)

  • Kim, Jin-Wook;Jeong, Won-Sang;Lee, Jae-Hyung;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.389-390
    • /
    • 2020
  • 본 논문은 DC 마이크로그리드에서 배터리 에너지 저장 장치의 SoC(State-of-Charge)를 기반으로 한 계층 제어 기법을 제안한다. DC 마이크로그리드의 안정적인 운영을 위해 계층 구조의 제어방식이 필요하다. 제안하는 계층 제어 기법은 2 레벨로 구성된다. 1차 제어에서는 SoC에 의해 드룹 계수가 조정되고 충·방전 전류가 제어되어 SoC 밸런싱이 이루어진다. 2차 제어는 1차 제어에 의해 발생하는 배전망 전압강하를 보상한다. 제안하는 SoC 기반 계층 제어를 적용한 에너지 저장 장치는 일정 SoC 운용범위에서 동작하고 배전망 전압을 일정하게 유지하여 DC 마이크로그리드의 안정적인 전력관리가 가능해진다. 본 논문에서는 PSIM 시뮬레이션을 통해 제안하는 기법의 유효성을 검증하였다.

  • PDF

A Multiagent-Based Hybrid Power Control and Management of Distributed Power Sources

  • Yoon, Gi-Gab;Hong, Won-Pyo;Lee, Ki-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.70-81
    • /
    • 2011
  • In this paper, a multi-agent control system for DC-coupled photovoltaic (PV), fuel cell (FC), ultracapacitor(UC) and battery hybrid power system is studied for commercial buildings & apartment buildings microgrid. In this proposed system, the PV system provides electric energy to the electrolyzer to produce hydrogen for future use and transfer to the load side, if possible. Whenever the PV system cannot completely meet load demands, the FC system provides power to meet the remaining load. A multi-agent system based-power management and control algorithm is proposed for the hybrid power system by taking into account the characteristics of each power source. The main works of this paper are hybridization of alternate energy sources with FC systems using long and short storage strategies to build the multi-agent control system with pragmatic design, and a dynamic model proposed for a PV/FC/UC/battery bank hybrid power generation system. A dynamic simulation model for the hybrid power system has been developed using Matlab/Simulink, SimPowerSystems and Stateflow. Simulation results are also presented to demonstrate the effectiveness of the proposed multi-agent control and management system for building microgrid.

Capacitor Failure Detection Technique for Microgrid Power Converter (마이크로그리드 전력변환장치용 커패시터 고장 검출 기법)

  • Woo-Hyun Lee;Gyang-Cheol Song;Jun-Jae An;Seong-Mi Park;Sung-Jun Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1117-1125
    • /
    • 2023
  • The DC part of the DC microgrid power conversion system uses capacitors for buffers of charge and discharge energy for smoothing voltage and plays important roles such as high frequency component absorption, power balancing, and voltage ripple reduction. The capacitor uses an aluminum electrolytic capacitor, which has advantages of capacity, low price, and relatively fast charging/discharging characteristics. Aluminum electrolytic capacitors(AEC) have previous advantages, but over time, the capacity of the capacitors decreases due to deterioration and an increase in internal temperature, resulting in a decrease in use efficiency or an accident such as steam extraction due to electrolyte evaporation. It is necessary to take measures to prevent accidents because the failure diagnosis and detection of such capacitors are a very important part of the long-term operation, safety of use, and reliability of the power conversion system because the failure of the capacitor leads to not only a single problem but also a short circuit accident of the power conversion system.

Complementary Power Control of the Bipolar-type Low Voltage DC Distribution System

  • Byeon, Gilsung;Hwang, Chul-Sang;Jeon, Jin-Hong;Kim, Seul-Ki;Kim, Jong-Yul;Kim, Kisuk;Ko, Bokyung;Kim, Eung-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.786-794
    • /
    • 2015
  • In this paper, a new power control strategy for the bipolar-type low voltage direct current (LVDC) distribution system is being proposed. The dc distribution system is considered as an innovative system according to the increase of dc loads and dc output type distribution energy resources (DERs) such as photovoltaic (PV) systems and energy storage systems (ESS). Since the dc distribution system has many advantages such as feasible connection of DERs, reduction of conversion losses between dc output sources and loads, no reactive power issues, it is very suitable solution for new type buildings and residences interfaced with DERs and ESSs. In the bipolar-type, if it has each grid-interfaced converter, both sides (upper, lower-side) can be operated individually or collectively. A complementary power control strategy using two ESSs in both sides for effective and reliable operation is proposed in this paper. Detailed power control methods of the host controller and local controllers are described. To verify the performances of the proposed control strategy, simulation analysis using PSCAD/EMTDC is being performed where the results show that the proposed strategy provides efficient operations and can be applied to the bipolar-type dc distribution system.

Modification of an Analysis Algorithm for DC Power Systems Considering Scalable Topologies

  • Lee, Won-Poong;Choi, Jin-Young;Park, Young-Ho;Kim, Soo-Nam;Won, Dong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1852-1863
    • /
    • 2018
  • Direct current(DC) systems have recently attracted attention due to the increase in DC loads and distributed generations, such as renewable energy sources. Among these technologies, there has been much research into DC distribution systems or DC microgrids. Within this body of research, the main topics have been about optimum control and operation methods in terms of improving power efficiency. When DC systems are controlled and operated using power electronic devices such as converters, it is necessary to design and analyze them by considering the power electronics sections. For this reason, we propose a scalable DC system analysis algorithm, which considers various system configurations depending on the operating mode and location of the converter. The algorithm consists of power flow fault current calculations, and the results of the algorithm can be used for designing DC systems. The algorithm is implemented using MATLAB with defined input and output data. The verification of the algorithm is mainly performed using ETAP software, and the accuracy of the algorithm analysis can be confirmed through the results.

A Study on High Voltage SMPS for Control Power in DC Microgrid System (DC 마이크로 그리드 시스템 제어전원용 고압 SMPS에 대한 연구)

  • Park, Byung-Chul;Oh, Seung-Yeol;Choi, Jung-Sik;Hong, Seung-Pyo;Lim, Young-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.984-985
    • /
    • 2015
  • 본 논문은 독립형 DC 마이크로 그리드 시스템에 적용하기 위한 고강압 SMPS를 설계하고 실험을 통하여 타당성을 검증 하였다. 제안된 시스템은 500~1500Vdc의 입력을 받아 15Vdc의 전압을 출력해 주는 장치로서 DC 마이크로 그리드 시스템에서 주변기기 제어전원용으로 구성하고자 하는 장치이다. 본 시스템은 플라이백 컨버터를 기반으로 구성 되었으며 입력 전압이 높아 단일 FET로 구성이 어려워 3직렬로 전압을 분배 하여 구성했다. 제안된 시스템의 검증을 위해 실험한 결과 20W의 부하에서 82%의 효율을 보이며 정상적인 전압의 출력이 가능 하였다.

  • PDF

DC-Voltage Regulation for Solar-Variable Speed Hybrid System (태양광 기반의 가변속 하이브리드 시스템을 위한 직류 전압 제어)

  • Niyitegeka, Gedeon;Lee, Kyungkyu;Choi, Jaeho;Song, Yujin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.231-237
    • /
    • 2016
  • Recently, the interest in DC systems to achieve more efficient connection with renewable energy sources, energy storage systems, and DC loads has been growing extensively. DC systems are more advantageous than AC systems because of their low conversion losses. However, the DC-link voltage is variable during operation because of different random effects. This study focuses on DC voltage stabilization applied in stand-alone DC microgrids by means of voltage ranges, power management, and coordination scheme. The quality and stability of the entire system are improved by keeping the voltage within acceptable limits. In terms of optimized control, the maximum power should be tracked from renewable resources during different operating modes of the system. The ESS and VSDG cover the power shortage after all available renewable energy is consumed. Keeping the state of charge of the ESS within the allowed bands is the key role of the control system. Load shedding or power generation curtailment should automatically occur if the maximum tolerable voltage variation is exceeded. PSIM-based simulation results are presented to evaluate the performance of the proposed control measures.

The Development and Experimental Evaluation of 100kVA Unified Power Quality Conditioner interconnected to the Li-Battery System (리튬 배터리를 연계한 100kVA UPQC 개발 및 성능시험)

  • Lee, Hak-Ju;Chae, Woo-Kyu;Park, Jung-Sung;Sohn, Jin-Man;Choi, Eun-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.10
    • /
    • pp.102-110
    • /
    • 2012
  • This paper propose the advanced topology of UPQC, its DC link is connected with Lithium battery, to compensate the momentary interruptions. The proposed system can be operated as UPS mode using the parallel inverter, which control the charge or discharge of battery, in case of the interruption. We dvelop 100kVA UPQC using the proposed topology to rise the power quality and the reliability of Microgrid. We verify its usefulness through voltage compensation test, UPS operation test and etc. using Microgrid test facility.