• Title/Summary/Keyword: dbh-differentiation

Search Result 2, Processing Time 0.017 seconds

Estimating the Stand Structure Index Based on Lorenz Curve (Lorenz곡선(曲線)에 근거(根據)한 임분구조지수추정(林分構造指數推定))

  • Lee, Woo-Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.2
    • /
    • pp.158-166
    • /
    • 1997
  • This study presents the method to quantify the stand structure diversity or homogeneity. Gadow's dbh differentiation(Durchmesserdifferenzierung) is introduced which quantifies the horizontal stand structure by the ratio of the dbh between subject tree and neighbour trees. And new stand structure diversity index based on Lorenz curve, which is made by ratio of tree number and basal area or volume by dbh class, is presented. The horizontal stand structure index based on Lorenz curve has a value from 0 to 1 as Gadow's index, and approximates to 1 if the stand structure has high diversity. In the comparative analysis for performance, the new stand structure index based on Lorenz curve is considered to compare with the Gadow's index for describing the stand structure.

  • PDF

Height-DBH Growth Models of Major Tree Species in Chungcheong Province (충청지역 주요 수종의 수고-흉고직경 생장모델에 관한 연구)

  • Seo, Yeon Ok;Lee, Young Jin;Rho, Dai Kyun;Kim, Sung Ho;Choi, Jung Kee;Lee, Woo Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.62-69
    • /
    • 2011
  • Six commonly used non-linear growth functions were fitted to individual tree height-dbh data of eight major tree species measured by the $5^{th}$ National Forest Inventory in Chungcheong province. A total of 2,681 trees were collected from permanent sample plots across Chungcheong province. The available data for each species were randomly splitted into two sets: the majority (90%) was used to estimate model parameters and the remaining data (10%) were reserved to validate the models. The performance of the models was compared and evaluated by $R^2$, RMSE, mean difference (MD), absolute mean difference (AMD) and mean difference(MD) for diameter classes. The combined data (100%) were used for final model fitting. The results showed that these six sigmoidal models were able to capture the height-diameter relationships and fit the data equally well, but produced different asymptote estimates. Sigmoidal growth models such as Chapman-Richards, Weibull functions provided the most satisfactory height predictions. The effect of model performance on stem volume estimation was also investigated. Tree volumes of different species were computed by the Forest Resources Evaluation and Prediction Program using observed range of diameter and the predicted tree total height from the six models. For trees with diameter less than 30 cm, the six height-dbh models produced very similar results for all species, while more differentiation among the models was observed for large-sized trees.