• Title/Summary/Keyword: datum model

Search Result 92, Processing Time 0.029 seconds

A Study on Fast Datum Transformation model for GIS (지리정보시스템을 위한 고속 측지계 변환 모델 연구)

  • Suh, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.3
    • /
    • pp.48-56
    • /
    • 2004
  • This research focuses on the development of a fast datum transformation model to be used in GIS that utilizes real-time data transformation. Instance, when a GIS data constructed according to a datum is conformed to another datum, instead of transforming the axes of the original data, the data is transformed right before the results are reflected on the monitor. In this research, the prospects of calculating transformation parameters for every grid cells on the area based on two-dimensional conformal transformation model in order to decrease real-time datum transformation time while maintaining a high accuracy has been investigated. Research results showed that for a fixed area, the accuracies of the two-dimensional conformal transformation and the three-dimensional datum transformation, which requires more computing time, were almost equal and fast transformation speed, high accuracy real-time datum transformation is made feasible by implementing the grid-divided two-dimensional conformal transformation model.

  • PDF

The Datum Design Study of High Precision GPS Height Monitoring Network---- with the Example of Monitoring Land Subsidence & Ground Fissure in Xi'an City

  • Qin, Zhang;Li, Wang;Zhong, Liu;Guan-wen, Huang;Xiao-guang, Ding
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.229-234
    • /
    • 2006
  • There are still some key problems having to be solved in theory and technique applications when GPS is used to monitor the vertical deformation of ground with high precision. Utilizing the GPS technology to monitor the deformation of the land subsidence and ground fissure in Xi'an, this paper puts forward advice that the datum frame of GPS network has significant influence on the precision and accuracy of the vertical deformation results by some research. The co-authors make some theoretical study of the datum error and practice by establishing the datum error models, especially the influence of scale and azimuth datum errors on GPS monitoring network. Then the datum frame design methods and arithmetic of GPS monitoring network are presented and have taken a good effect.

  • PDF

Optimal National Coordinate System Transform Model using National Control Point Network Adjustment Results (국가지준점 망조정 성과를 활용한 최적 국가 좌표계 변환 모델 결정)

  • Song, Dong-Seob;Jang, Eun-Seok;Kim, Tae-Woo;Yun, Hong-Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_2
    • /
    • pp.613-623
    • /
    • 2007
  • The main purpose of this study is to investigate the coordinate transformation based on two different systems between local geodetic datum(tokyo datum) and international geocentric datum(new Korea geodetic datum). For this purpose, three methods were used to determine seven parameters as follows: Bursa-Wolf model, Molodensky-Badekas model, and Veis model. Also, we adopted multiple regression equation method to convert from Tokyo datum to KTRF. We used 935 control points as a common points and applied gross error analysis for detecting the outlier among those control points. The coordinate transformation was carried out using similarity transformation applied the obtained seven parameters and the precision of transformed coordinate was evaluated about 9,917 third or forth order control points. From these results, it was found that Bursa-Wolf model and Molodensky-Badekas model are more suitable than other for the determination of transformation parameters in Korea. And, transforming accuracy using MRE is lower than other similarity transformation model.

Coordlinate Transformation Parameter Estimation for Korean Seas and Islands

  • KWON Jay Hyoun;BAE Tae-Suk;CHOI Yoon-Soo
    • Korean Journal of Geomatics
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 2005
  • According to revisions of survey law taking effect on January 1, 2003, the Korean geodetic datum has been changed from a local geodetic to a world geodetic system. In this study, the datum transformation parameters especially for the maritime geographical data are determined. From database constructed through MGIS, a total of 492 coordinate pairs were selected and used in the parameter determination after outlier testing. Based on the parameter estimation, the Molodensky model is selected for datum transformation. For higher accuracy, Application of network optimization and a least squares collocation with Gaussian model has resulted in the accuracy better than 15 cm in coordinate transformation.

  • PDF

Transformation Model of Vertical Datum between Land and Ocean Height System using the Precise Spirit Leveling Results (정밀수준측량 성과를 이용한 육상 및 해상 수직기준면 변환모델링)

  • Lee, Dong-Ha;Yun, Hong-Sic;Hwang, Jin Sang;Suh, Yong-Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4D
    • /
    • pp.407-419
    • /
    • 2012
  • It is difficult to obtain the accurate and homogeneous height information over the whole Korea due to the effect of different vertical datums have been divided into land and sea part. In this study, we tried to unify the different vertical datums using the precise spirit leveling between TBM (tidal bench mark) and BM (bench mark) in order to solve the problems caused by different vertical datums. For this, the vertical datum offsets at observed points which were calculate from leveling results and then transformation model of vertical datum will be modelled using calculated offsets along the coastal line. For suggesting the precise modelling method to vertical datum transformation, we analyzed results from various interpolation methods such as Spline and LSC method. As the results from analysis, the LSC method combined with 4-parameters trend model is more suitable for modelling the offsets between vertical datums. The final transformation model of vertical datum using the combination of LSC and 4-parameter model which provides the transformation accuracies of ${\pm}10.4cm{\sim}14.8cm$ level. And, the software for vertical datum transformation that was also developed using the final model in order to convert the height information included in various spatial data effectively. Therefore, the transformation model between vertical datums of land and sea part, which is developed in this study, is expected to minimize the confusion caused by mismatch of height information in the use of spatial data, and it also can be minimize economic and time losses in various application fields such as coastal development project, coastal disaster prevention, etc.

Height Datum Transformation using Precise Geoid and Tidal Model in the area of Anmyeon Island (정밀 지오이드 및 조석모델을 활용한 안면도 지역의 높이기준면 변환 연구)

  • Roh, Jae Young;Lee, Dong Ha;Suh, Yong Cheol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.109-119
    • /
    • 2016
  • The height datum of Korea is currently separated into land and sea, which makes it difficult to acquire homogeneous and accurate height information throughout the whole nation. In this study, we therefore tried to suggest the more effective way to transform the height information were constructed separately according to each height datum on land and sea to those on the unique height datum using precise geoid models and tidal observations in Korea. For this, Anmyeon island was selected as a study area to develop the precise geoid models based on the height datums land (IMSL) and sea (LMSL), respectively. In order to develop two hybrid geoid models based on each height datum of land an sea, we firstly develop a precise gravimetric geoid model using the remove and restore (R-R) technique with all available gravity observations. The gravimetric geoid model were then fitted to the geometric geoidal heights, each of which is represented as height datum of land or sea respectively, obtained from GPS/Leveling results on 15 TBMs in the study area. Finally, we determined the differences between the two hybrid geoid models to apply the height transformation between IMSL and LMSL. The co-tidal chart model of TideBed system developed by Korea Hydrographic and Oceanographic Agency (KHOA) which was re-gridded to have the same grid size and coverage as the geoid model, in order that this can be used for the height datum transformation from LMSL to local AHHW and/or from LMSL to local DL. The accuracy of height datum transformation based on the strategy suggested in this study was approximately ${\pm}3cm$. It is expected that the results of this study can help minimize not only the confusions on the use of geo-spatial information due to the disagreement caused by different height datum, land and sea, in Korea, but also the economic and time losses in the execution of coastal development and disaster prevention projects in the future.

Making Teeth Models using 3-aixs CNC Milling (3축 CNC 밀링을 이용한 치아 모형 제작 방법)

  • Choe, W.C.;Seo, U.J.;Baek, J.H.;Chung, Y.
    • Transactions of Materials Processing
    • /
    • v.23 no.1
    • /
    • pp.16-22
    • /
    • 2014
  • The current study presents a simple setup method for making teeth models using a three-axis CNC milling machine. Physical teeth models can be made by several methods: casting, machining, and three-dimensional printing. Since the shape of a teeth model requires five-axis machining, the machining of a teeth model using a three-axis CNC milling machine requires careful setup operations. In this paper a simple datum shape is designed within the work piece of the teeth model. The datum shape is an n-sided prism with regular n-polygon ends and rectangular sides. In the present study a 12-sided prism is used, which easily makes 30 degree rotations for finish machining. The proposed setup approach does not require any special tools for making the teeth model using a three-axis CNC milling machine. A test was run and the results show that the proposed approach is useful for experimental makings with the limited facilities available.

An Analysis on Characteristics and the Development of Estimation Model of Internal Heat Gain from Appliances in Apartment Units (공동주택 단위세대의 기기발열 특성 분석 및 추정모델 개발)

  • Lee, Soo-Jin;Jin, Hye-Sun;Kim, Sung-Im;Lim, Han-Young;Lim, Jae-Han;Song, Seung-Yeong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.10
    • /
    • pp.19-26
    • /
    • 2018
  • The purpose of this study was to analyze characteristics and to develop estimation model of IHG(Internal Heat Gain) from appliance in domestic apartment units. To do this, it was defined the source of IHG from appliance and the calculation method through the case study of international and domestic codes. And the equipment related datum such possession, usage or not, etc were collected through field survey in apartment units, and the appliances' electricity consumption were measured separately from overall electricity consumption. Annual electricity consumption value were calculated with field survey datum and appliances' electricity consumption measurement datum, and then IHG value was calculated by applying PHPP v9 method. And it was conducted correlation analysis between IHG value and the area for exclusive use, the number of occupants, and then the IHG from applianace estimation model was deducted with regression analysis. Finally, it was analyzed the present level and of the domestic code(The Building Energy Efficiency Rating System) comparing with the value of estimation model, and the various international codes(HERS, Building America, SAP).

The Characteristics of Various Deviation by Block Adjustment According to GCP Arrangement (GCP 배치에 따른 Block 조정의 오차 전파 특성)

  • Kang, Joon-Mook;Um, Dae-Yong;Kang, Young-Mi;Jeon, Kyong-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.3 s.21
    • /
    • pp.29-40
    • /
    • 2002
  • In photogrammetry, the accuracy is analyzed by using the coordinate of the targeted position determined by the geometric principle, thus, the reliability depends on the accuracy of the coordinate of the targeted position. Thereby, geographic surveying is essential to perform such tasks, and it requires approximately $30{\sim}50%$ of total cost and times to produce a finalized map. The main purpose of this study is to determine the configuration of the disposition of minimum datum points and their configuration, which were determined by surveying values available through using the structure of block model based on the aerotriangulation. ortho projection image was produce and digital topographic map was achieved by the optima model(CASE7). We also performed comparative analysis about the result of local datum point and the accuracy of overlapping based on the surveying results. Consequently, it is possible to analyze the unknown position accurately with the optimal model., CASE 7, which is the minimum datum points configuration required to block adjustment. Furthermore, this optimal model, which provides the minimum datum points, results costs and time saving effects compared to the previous methodology.

  • PDF

Boresight Calibration Comparison Using Geoid Models (지오이드 모델에 따른 Boresight 검정 비교)

  • So, Jae Kyeong;Park, Young Su;Won, Jae Ho;Yun, Hee Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.3
    • /
    • pp.291-297
    • /
    • 2016
  • Direct georeferencing has become widespread in the field of digital aerial photogrammetry; as a result, the boresight calibration has become an essential component of the procedure to calculating exterior orientation parameters of aerial photographs accurately. During this procedure, a reference is used for the height of the geoid model, and the calibration results can appear different depending on the geoid model. The exterior orientation parameters calculated through direct georeferencing during boresight calibration may have varied values according to the corresponding geoid model. With that in mind, the effects of the geoid model on the boresight calibration were analyzed through three different cases. The geoid models used in the experiments were EGM96, EGM08, and KNGeoid14, and, through boresight calibration, the datum shift and boresight angle for each model was computed. After calculating the exterior orientation of each case, the GCP (Ground Control Point) was verified using the DPW (Digital Photogrammetry Workstation). In each case, results in the boresight calibration acquired through the geoid model demonstrated a difference in the Z datum, the exterior orientation heights Z, and the rotation Ω and Φ. After utilizing the DPW in each case and comparing it to the GCP, the difference in accuracy in accordance with the geoid model was found to be within 3cm, and it was concluded that the geoid model did not have a significant impact on boresight calibration.