• Title/Summary/Keyword: datasets

Search Result 2,091, Processing Time 0.041 seconds

Prototype Development of Marine Information based Supporting System for Oil Spill Response (해양정보기반 방제지원시스템 프로토타입 구축에 관한 연구)

  • Kim, Hye-Jin;Lee, Moonjin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.4
    • /
    • pp.182-192
    • /
    • 2008
  • In oder to develop a decision supporting system for oil spill response, the prototype of pollution response support system which has integrated oil spill prediction system and pollution risk prediction system has developed for Incheon-Daesan area. Spill prediction system calculates oil spill aspects based on real-time wind data and real-time water flow and the residual volume of spilt oil and spread pattern are calculated considering the characteristic of spilt oil. In this study, real-time data is created from results of real-time meteorological forecasting model(National Institute of Environmental Research) using ftp, real-time tidal currents datasets are built using CHARRY(Current by Harmonic Response to the Reference Yardstick) model and real-time wind-driven currents are calculated applying the correlation function between wind and wind-driven currents. In order to model the feature which is spilt oil spreading according to real-time water flow is weathered, the decrease ratio by oil kinds was used. These real-time data and real-time prediction information have been integrated with ESI(Environmental Sensitivity Index) and response resources and then these are provided using GIS as a whole system to make the response strategy.

  • PDF

A Concordance Study of the Preprocessing Orders in Microarray Data (마이크로어레이 자료의 사전 처리 순서에 따른 검색의 일치도 분석)

  • Kim, Sang-Cheol;Lee, Jae-Hwi;Kim, Byung-Soo
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.585-594
    • /
    • 2009
  • Researchers of microarray experiment transpose processed images of raw data to possible data of statistical analysis: it is preprocessing. Preprocessing of microarray has image filtering, imputation and normalization. There have been studied about several different methods of normalization and imputation, but there was not further study on the order of the procedures. We have no further study about which things put first on our procedure between normalization and imputation. This study is about the identification of differentially expressed genes(DEG) on the order of the preprocessing steps using two-dye cDNA microarray in colon cancer and gastric cancer. That is, we check for compare which combination of imputation and normalization steps can detect the DEG. We used imputation methods(K-nearly neighbor, Baysian principle comparison analysis) and normalization methods(global, within-print tip group, variance stabilization). Therefore, preprocessing steps have 12 methods. We identified concordance measure of DEG using the datasets to which the 12 different preprocessing orders were applied. When we applied preprocessing using variance stabilization of normalization method, there was a little variance in a sensitive way for detecting DEG.

Assessing the Effects of Climate Change on the Geographic Distribution of Pinus densiflora in Korea using Ecological Niche Model (소나무의 지리적 분포 및 생태적 지위 모형을 이용한 기후변화 영향 예측)

  • Chun, Jung Hwa;Lee, Chang-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.219-233
    • /
    • 2013
  • We employed the ecological niche modeling framework using GARP (Genetic Algorithm for Ruleset Production) to model the current and future geographic distribution of Pinus densiflora based on environmental predictor variable datasets such as climate data including the RCP 8.5 emission climate change scenario, geographic and topographic characteristics, soil and geological properties, and MODIS enhanced vegetation index (EVI) at 4 $km^2$ resolution. National Forest Inventory (NFI) derived occurrence and abundance records from about 4,000 survey sites across the whole country were used for response variables. The current and future potential geographic distribution of Pinus densiflora, one of the tree species dominating the present Korean forest was modeled and mapped. Future models under RCP 8.5 scenarios for Pinus densiflora suggest large areas predicted under current climate conditions may be contracted by 2090 showing range shifts northward and to higher altitudes. Area Under Curve (AUC) values of the modeled result was 0.67. Overall, the results of this study were successful in showing the current distribution of major tree species and projecting their future changes. However, there are still many possible limitations and uncertainties arising from the select of the presence-absence data and the environmental predictor variables for model input. Nevertheless, ecological niche modeling can be a useful tool for exploring and mapping the potential response of the tree species to climate change. The final models in this study may be used to identify potential distribution of the tree species based on the future climate scenarios, which can help forest managers to decide where to allocate effort in the management of forest ecosystem under climate change in Korea.

Revisiting design flood estimation of Nam River Dam basin considering climate change (기후변화를 고려한 남강댐 유역의 홍수량 재산정)

  • Lee, Hyunseung;Lee, Taesam;Park, Taewoong;Son, Chanyoung
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.8
    • /
    • pp.719-729
    • /
    • 2016
  • Extreme events of rainfall has increased mainly from climate change, resulting in more severe floods intensified by land use development. Appropriate estimation of design floods gets more attention to ensuring the safety of life and property in flood-prone areas for hydraulic structures such as dams and levees. In the current study, we reestimated the design flood of the Nam River Dam to adopt the influence of climatic change of hydrometeorological variables including recent datasets of extreme rainfall events. The climate change scenarios of extreme rainfall events in hourly scale that has been downscaled was used in analyzing the annual maximum rainfall for the weather stations in the Nam River Dam basin. The estimates of 200-year and 10,000-year return periods were calculated to provide a design flood and a probable maximum flood case for the Nam River Dam. The results present that the new estimate employing the RCP4.5 and RCP8.5 downscaled data is much higher than the original design flood estimated at the dam construction stage using a 200-year return period. We can conclude that the current dam area might be highly vulnerable and need an enhancement of the dam safety regarding the reduction of damage in Sachen bay from the outflow of Nam River Dam.

Investigating the Impact of Random and Systematic Errors on GPS Precise Point Positioning Ambiguity Resolution

  • Han, Joong-Hee;Liu, Zhizhao;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.233-244
    • /
    • 2014
  • Precise Point Positioning (PPP) is an increasingly recognized precisely the GPS/GNSS positioning technique. In order to improve the accuracy of PPP, the error sources in PPP measurements should be reduced as much as possible and the ambiguities should be correctly resolved. The correct ambiguity resolution requires a careful control of residual errors that are normally categorized into random and systematic errors. To understand effects from two categorized errors on the PPP ambiguity resolution, those two GPS datasets are simulated by generating in locations in South Korea (denoted as SUWN) and Hong Kong (PolyU). Both simulation cases are studied for each dataset; the first case is that all the satellites are affected by systematic and random errors, and the second case is that only a few satellites are affected. In the first case with random errors only, when the magnitude of random errors is increased, L1 ambiguities have a much higher chance to be incorrectly fixed. However, the size of ambiguity error is not exactly proportional to the magnitude of random error. Satellite geometry has more impacts on the L1 ambiguity resolution than the magnitude of random errors. In the first case when all the satellites have both random and systematic errors, the accuracy of fixed ambiguities is considerably affected by the systematic error. A pseudorange systematic error of 5 cm is the much more detrimental to ambiguity resolutions than carrier phase systematic error of 2 mm. In the $2^{nd}$ case when only a portion of satellites have systematic and random errors, the L1 ambiguity resolution in PPP can be still corrected. The number of allowable satellites varies from stations to stations, depending on the geometry of satellites. Through extensive simulation tests under different schemes, this paper sheds light on how the PPP ambiguity resolution (more precisely L1 ambiguity resolution) is affected by the characteristics of the residual errors in PPP observations. The numerical examples recall the PPP data analysts that how accurate the error correction models must achieve in order to get all the ambiguities resolved correctly.

A Study on the Integration of Airborne LiDAR and UAV Data for High-resolution Topographic Information Construction of Tidal Flat (갯벌지역 고해상도 지형정보 구축을 위한 항공 라이다와 UAV 데이터 통합 활용에 관한 연구)

  • Kim, Hye Jin;Lee, Jae Bin;Kim, Yong Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.345-352
    • /
    • 2020
  • To preserve and restore tidal flats and prevent safety accidents, it is necessary to construct tidal flat topographic information including the exact location and shape of tidal creeks. In the tidal flats where the field surveying is difficult to apply, airborne LiDAR surveying can provide accurate terrain data for a wide area. On the other hand, we can economically obtain relatively high-resolution data from UAV (Unmanned Aerial Vehicle) surveying. In this study, we proposed the methodology to generate high-resolution topographic information of tidal flats effectively by integrating airborne LiDAR and UAV point clouds. For the purpose, automatic ICP (Iterative Closest Points) registration between two different datasets was conducted and tidal creeks were extracted by applying CSF (Cloth Simulation Filtering) algorithm. Then, we integrated high-density UAV data for tidal creeks and airborne LiDAR data for flat grounds. DEM (Digital Elevation Model) and tidal flat area and depth were generated from the integrated data to construct high-resolution topographic information for large-scale tidal flat map creation. As a result, UAV data was registered without GCP (Ground Control Point), and integrated data including detailed topographic information of tidal creeks with a relatively small data size was generated.

Frequently Occurred Information Extraction from a Collection of Labeled Trees (라벨 트리 데이터의 빈번하게 발생하는 정보 추출)

  • Paik, Ju-Ryon;Nam, Jung-Hyun;Ahn, Sung-Joon;Kim, Ung-Mo
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.65-78
    • /
    • 2009
  • The most commonly adopted approach to find valuable information from tree data is to extract frequently occurring subtree patterns from them. Because mining frequent tree patterns has a wide range of applications such as xml mining, web usage mining, bioinformatics, and network multicast routing, many algorithms have been recently proposed to find the patterns. However, existing tree mining algorithms suffer from several serious pitfalls in finding frequent tree patterns from massive tree datasets. Some of the major problems are due to (1) modeling data as hierarchical tree structure, (2) the computationally high cost of the candidate maintenance, (3) the repetitious input dataset scans, and (4) the high memory dependency. These problems stem from that most of these algorithms are based on the well-known apriori algorithm and have used anti-monotone property for candidate generation and frequency counting in their algorithms. To solve the problems, we base a pattern-growth approach rather than the apriori approach, and choose to extract maximal frequent subtree patterns instead of frequent subtree patterns. The proposed method not only gets rid of the process for infrequent subtrees pruning, but also totally eliminates the problem of generating candidate subtrees. Hence, it significantly improves the whole mining process.

  • PDF

Detection of M:N corresponding class group pairs between two spatial datasets with agglomerative hierarchical clustering (응집 계층 군집화 기법을 이용한 이종 공간정보의 M:N 대응 클래스 군집 쌍 탐색)

  • Huh, Yong;Kim, Jung-Ok;Yu, Ki-Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.125-134
    • /
    • 2012
  • In this paper, we propose a method to analyze M:N corresponding relations in semantic matching, especially focusing on feature class matching. Similarities between any class pairs are measured by spatial objects which coexist in the class pairs, and corresponding classes are obtained by clustering with these pairwise similarities. We applied a graph embedding method, which constructs a global configuration of each class in a low-dimensional Euclidean space while preserving the above pairwise similarities, so that the distances between the embedded classes are proportional to the overall degree of similarity on the edge paths in the graph. Thus, the clustering problem could be solved by employing a general clustering algorithm with the embedded coordinates. We applied the proposed method to polygon object layers in a topographic map and land parcel categories in a cadastral map of Suwon area and evaluated the results. F-measures of the detected class pairs were analyzed to validate the results. And some class pairs which would not detected by analysis on nominal class names were detected by the proposed method.

Estimation of Daily per Capita Intake of Total Phenolics, Total Flavonoids, and Antioxidant Capacities from Commercial Products of Japanese Apricot (Prunus mume) in the Korean Diet, Based on the Korea National Health and Nutrition Examination Survey in 2010 (2010년 국민건강영양조사에 근거한 매실가공품 섭취로부터 한국인의 일인당 하루 총페놀, 총플라보노이드 및 항산화능 섭취량 추정)

  • Lee, Bong Han;Yoo, Hee Geun;Baek, Youngsu;Kwon, O Jun;Chung, Dae Kyun;Kim, Dae-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.237-244
    • /
    • 2014
  • The total phenolics, total flavonoids, and antioxidant capacities of ten commercial products of Japanese apricot (maesil) were evaluated, including four kinds of alcoholic drinks, two kinds of soft drinks, and four kinds of concentrate found in the Korean market. The daily per capita consumption (g/capita/day) of each product was calculated from in the existing dataset of the Korea National Health and Nutrition Examination Survey in 2010. Using the combined datasets indicated above, the daily per capita intake of total phenolics from maesil product consumption was found to be 1.05 mg gallic acid equivalents. The daily per capita intake of total flavonoids was determined to be 0.13 mg catechin equivalents, and the daily per capita intake of antioxidant capacities were measured at 0.70 mg vitamin C equivalents (1,1-diphenyl-2-picrylhydrazyl assay), and at 1.04 mg vitamin C equivalents (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) assay). The daily per capita intakes of total phenolics, total flavonoids, and antioxidant capacities were influenced by the daily quantity of consumption of maesil products, as well as their compositional contents.

Evaluation of a Hydro-ecologic Model, RHESSys (Regional Hydro-Ecologic Simulation System): Parameterization and Application at two Complex Terrain Watersheds (수문생태모형 RHESSys의 평가: 두 복잡지형 유역에서의 모수화와 적용)

  • Lee, Bo-Ra;Kang, Sin-Kyu;Kim, Eun-Sook;Hwang, Tae-Hee;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.4
    • /
    • pp.247-259
    • /
    • 2007
  • In this study, we examined the flux of carbon and water using an eco-hydrological model, Regional Hydro-Ecologic Simulation System (RHESSys). Our purposes were to develop a set of parameters optimized for a well-designed experimental watershed (Gwangneung Research Watershed, GN) and then, to test suitability of the parameters for predicting carbon and water fluxes of other watershed with different regimes of climate, topography, and vegetation structure (i.e Gangseonry Watershed in Mt. Jumbong, GS). Field datasets of stream flow, soil water content (SWC), and wood biomass product (WBP) were utilized for model parameterization and validation. After laborious parameterization processes, RHESSys was validated with the field observations from the GN watershed. The parameter set identified at the GN watershed was then applied to the GS watershed in Mt. Jumbong, which resulted in good agreement for SWC but poor predictability for WBP. Our study showed that RHESSys simulated reliable SWC at the GS by adjusting site-specific porosity only. In contrast, vegetation productivity would require more rigorous site-specific parameterization and hence, further study is necessary to identify primary field ecophysiological variables for enhancing model parameterization and application to multiple watersheds.