We have developed an inversion algorithm for loop-loop electromagnetic (EM) data, based on the localised non-linear or extended Born approximation to the solution of the 2.5D integral equation describing an EM scattering problem. Source and receiver configuration may be horizontal co-planar (HCP) or vertical co-planar (VCP). Both multi-frequency and multi-separation data can be incorporated. Our inversion code runs on a PC platform without heavy computational load. For the sake of stable and high-resolution performance of the inversion, we implemented an algorithm determining an optimum spatially varying Lagrangian multiplier as a function of sensitivity distribution, through parameter resolution matrix and Backus-Gilbert spread function analysis. Considering that the different source-receiver orientation characteristics cause inconsistent sensitivities to the resistivity structure in simultaneous inversion of HCP and VCP data, which affects the stability and resolution of the inversion result, we adapted a weighting scheme based on the variances of misfits between the measured and calculated datasets. The accuracy of the modelling code that we have developed has been proven over the frequency, conductivity, and geometric ranges typically used in a loop-loop EM system through comparison with 2.5D finite-element modelling results. We first applied the inversion to synthetic data, from a model with resistive as well as conductive inhomogeneities embedded in a homogeneous half-space, to validate its performance. Applying the inversion to field data and comparing the result with that of dc resistivity data, we conclude that the newly developed algorithm provides a reasonable image of the subsurface.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.12
no.6
/
pp.629-635
/
2019
In Deep Learning models derivative is implemented by error back-propagation which enables the model to learn the error and update parameters. It can find the global (or local) optimal points of parameters even in the complex models taking advantage of a huge improvement in computing power. However, deliberately generated data points can 'fool' models and degrade the performance such as prediction accuracy. Not only these adversarial examples reduce the performance but also these examples are not easily detectable with human's eyes. In this work, we propose the method to detect adversarial datasets with random noise addition. We exploit the fact that when random noise is added, prediction accuracy of non-adversarial dataset remains almost unchanged, but that of adversarial dataset changes. We set attack methods (FGSM, Saliency Map) and noise level (0-19 with max pixel value 255) as independent variables and difference of prediction accuracy when noise was added as dependent variable in a simulation experiment. We have succeeded in extracting the threshold that separates non-adversarial and adversarial dataset. We detected the adversarial dataset using this threshold.
Kim, Seong-il;Chang, Chin-Sung;Shadie, Peter;Park, SunJoo;Lee, Dong-Ho
Journal of Korean Society of Forest Science
/
v.104
no.3
/
pp.476-487
/
2015
This study was conducted to analyze the potential of Baekdu-daegan Mountain System (BDMS) in the Republic of Korea for World Heritage inscription and undertook preliminary global comparative analysis. UNEP WCMC global datasets, World Heritage global gap analyses and thematic studies conducted by IUCN were reviewed to see if the BDMS could have been identified within these as a priority area for World Heritage. With respect to potential Outstanding Universal Value this study found that the case for BDMS was weak. The BDMS lies within biogeographic regions which are already represented on the World Heritage List and at a global scale its natural values do not stand out. It was emphasized that a more fine scale analysis of the values should be undertaken. The BDMS stands out at a global scale in terms of the degree of contiguity between protected areas along its length and the legal and institutional frameworks established in the Republic of Korea. The BDMS has potential for a trans-national and serial properties along the full length of the BDMS, if two Koreas agree to work together.
The potential correlation of X-ray repair cross-complementing group 1 (XRCC1) Arg399Gln polymorphism with hepatocellular carcinoma (HCC) susceptibility is ambiguous. Taking account of inconsistent results of previous meta-analyses and new emerging literatures, we conducted a meta-analysis covering 15 case-control datasets to evaluate the relationship. Relevant studies from Medline, Embase and CNKI were retrieved. A fixed-effect model or a random-effect model, depending on between-study heterogeneity, were applied to estimate the association between XRCC1 polymorphism Arg399Gln and HCC risk with the results presented as odds ratios (ORs) and 95% confidence intervals (95% CIs). In accordance with Hardy-Weinberg equilibrium, 15 studies with data for 6,556 individuals were enrolled in this systematic review. For overall HCC,thr XRCC1 polymorphism Arg399Gln was significantly associated with HCC susceptibility in a homozygote model as well as in a dominant model (G/G vs. A/A, OR=1.253, p=0.028; G/G+A/G vs. A/A, OR= 1.281, p=0.047, respectively), but not in a heterozygote model (A/G vs. A/A, OR=1.271, p=0.066) or a recessive model (G/G vs. A/G + A/A, OR= 1.049, p=0.542). Similar results were also observed on stratification analysis by ethnicity (A/G vs. A/A, OR=1.357, p=0.025; G/G vs. A/A, OR=1.310, p=0.011; G/G+A/G vs. A/A, OR= 1.371, p=0.013). However, no potential contribution of XRCC1 Arg399Gln polymorphism to HCC susceptibility in HBV/HCV subgroups was identified. No publication bias was found in this study. In conclusion, the XRCC1 Arg399Gln polymorphism contributes to HCC susceptibility. Due to the lack of studies in Western countries, further large-sample and rigorous studies are needed to validate the findings.
Mirinezhad, Seyed Kazem;Jangjoo, Amir Ghasemi;Seyednejad, Farshad;Naseri, Ali Reza;Mohammadzadeh, Mohammad;Nasiri, Behnam;Eftekharsadat, Amir Taher;Farhang, Sara;Somi, Mohammad Hossein
Asian Pacific Journal of Cancer Prevention
/
v.15
no.2
/
pp.691-694
/
2014
Background: Tumor length in patients with esophageal cancer (EC) has recently received great attention. However, its prognostic role for EC is controversial. The purpose of our study was to characterize the prognostic value of tumor length in EC patients and offer the optimum cut-off point of tumor length by reliable statistical methods. Materials and Methods: A retrospective analysis was conducted on 71 consecutive patients with EC who underwent surgery. ROC curve analysis was used to determine the optimal cut-off point for tumor length, measured with a handheld ruler after formalin fixation. Correlations between tumor length and other factors were surveyed, and overall survival (OS) rates were compared between the two groups. Potential prognostic factors were evaluated by univariate Kaplan-Meier survival analysis. A P value less than 0.05 was considered significant. Results: There were a total of 71 patients, with a male/female divide of 43/28 and a median age of 59. Characteristics were as follows: squamous/adenocarcinoma, 65/6; median tumor length, 4 (0.9-10); cut-off point for tumor length, 4cm. Univariate analysis prognostic factors were tumor length and modality of therapy. One, three and five year OS rates were 84, 43 and 43% for tumors with ${\leq}4cm$ length, whereas the rates were 75, 9 and 0% for tumors >4 cm. There was a significant association between tumor length and age, sex, weight loss, tumor site, histology, T and N scores, differentiation, stage, modality of therapy and longitudinal margin involvement. Conclusions: Future studies for modification of the EC staging system might consider tumor length too as it is an important prognostic factor. Further assessment with larger prospective datasets and practical methods (such as endoscopy) is needed to establish an optimal cut-off point for tumor length.
Kim, Soontae;Kim, Okgil;Kim, Byeong-Uk;Kim, Hyun Cheol
Journal of Korean Society for Atmospheric Environment
/
v.33
no.2
/
pp.159-173
/
2017
The Weather Research and Forecast (WRF) - Community Multiscale Air Quality (CMAQ) system was applied to investigate the influence of major point sources located in Chungcheongnam-do (CN) on surface $PM_{2.5}$ (Particulate Matter of which diameter is $2.5{\mu}m$ or less) concentrations in its surrounding areas. Uncertainties associated with contribution estimations were examined through cross-comparison of modeling results using various combinations of model inputs and setups; two meteorological datasets developed with WRF for 2010 and 2014, and two domestic emission inventories for 2010 and 2013 were used to estimate contributions of major point sources in CN. The results show that contributions of major point sources in CN to annual $PM_{2.5}$ concentrations over Seoul, Incheon, Gyeonggi, and CN ranged $0.51{\sim}1.63{\mu}g/m^3$, $0.71{\sim}1.62{\mu}g/m^3$, $0.63{\sim}1.66{\mu}g/m^3$, and $1.04{\sim}1.86{\mu}g/m^3$, respectively, depending on meteorology and emission inventory choice. It indicates that the contributions over the surrounding areas can be affected by model inputs significantly. Nitrate was the most dominant $PM_{2.5}$ component that was increased by major point sources in CN followed by sulfate, ammonium, and others. Based on the model simulations, it was estimated that primary $PM_{2.5}$$(PPM)-to-PM_{2.5}$ conversion rates were 41.3~50.7 ($10^{-6}{\mu}g/m^3/TPY$) for CN, and 12.4~18.3 ($10^{-6}{\mu}g/m^3/TPY$) for Seoul, Incheon, and Gyeonggi, respectively. In addition, spatial gradients of PPM contributions show very steep trends. $NO_X$-to-nitrate conversion rates were 7.61~12.3 ($10^{-6}{\mu}g/m^3/TPY$) for CN, and 3.94~11.3 ($10^{-6}{\mu}g/m^3/TPY$) for the sub-regions in the SMA. $SO_2$-to-sulfate conversion rates were 4.04~5.28 ($10^{-6}{\mu}g/m^3/TPY$) for CN, and 3.73~4.43 ($10^{-6}{\mu}g/m^3/TPY$) for the SMA, respectively.
Kim, Byeong-Woo;Lee, Deukhwan;Jeon, Jin-Tae;Lee, Jung-Gyu
Asian-Australasian Journal of Animal Sciences
/
v.22
no.7
/
pp.923-930
/
2009
This study was conducted to compare three models: two random regression models with and without considering heterogeneity in the residual variances and a lactation model (LM) for evaluating the genetic ability of Holstein cows in Korea. Two datasets were prepared for this study. To apply the test-day random regression model, 94,390 test-day records were prepared from 15,263 cows. The second data set consisted of 14,704 lactation records covering milk production over 305 days. Raw milk yield and composition data were collected from 1998 to 2002 by the National Agricultural Cooperative Federation' dairy cattle improvement center by way of its milk testing program, which is nationally based. The pedigree information for this analysis was collected by the Korean Animal Improvement Association. The random regression models (RRMs) are single-trait animal models that consider each lactation record as an independent trait. Estimates of covariance were assumed to be different ones. In order to consider heterogeneity of residual variance in the analysis, test-days were classified into 29 classes. By considering heterogeneity of residual variance, variation for lactation performance in the early lactation classes was higher than during the middle classes and variance was lower in the late lactation classes than in the other two classes. This may be due to feeding management system and physiological properties of Holstein cows in Korea. Over classes e6 to e26 (covering 61 to 270 DIM), there was little change in residual variance, suggesting that a model with homogeneity of variance be used restricting the data to these days only. Estimates of heritability for milk yield ranged from 0.154 to 0.455, for which the estimates were variable depending on different lactation periods. Most of the heritabilities for milk yield using the RRM were higher than in the lactation model, and the estimate of genetic variance of milk yield was lower in the late lactation period than in the early or middle periods.
Recently, many suggestions have been made in image segmentation methods for extracting human organs or disease affected area from huge amounts of medical image datasets. However, images from some areas, such as brain, which have multiple structures with ambiruous structural borders, have limitations in their structural segmentation. To address this problem, clustering technique which classifies voxels into finite number of clusters is often employed. This, however, has its drawback, the influence from noise, which is caused from voxel by voxel operations. Therefore, applying image enhancing method to minimize the influence from noise and to make clearer image borders would allow more robust structural segmentation. This research proposes an efficient structural segmentation method by filtering based clustering to extract detail structures such as white matter, gray matter and cerebrospinal fluid from brain MR. First, coherence enhancing diffusion filtering is adopted to make clearer borders between structures and to reduce the noises in them. To the enhanced images from this process, fuzzy c-means clustering method was applied, conducting structural segmentation by assigning corresponding cluster index to the structure containing each voxel. The suggested structural segmentation method, in comparison with existing ones with clustering using Gaussian or general anisotropic diffusion filtering, showed enhanced accuracy which was determined by how much it agreed with the manual segmentation results. Moreover, by suggesting fine segmentation method on the border area with reproducible results and minimized manual task, it provides efficient diagnostic support for morphological abnormalities in brain.
Recently, the amount of data is rapidly increasing with the popularity of the SNS and the development of mobile technology. So, it has been actively studied for the effective data analysis schemes of the large amounts of data. One of the typical schemes is a Voronoi diagram based on kNN join algorithm (VkNN-join) using MapReduce. For two datasets R and S, VkNN-join can reduce the time of the join query processing involving big data because it selects the corresponding subset Sj for each Ri and processes the query with them. However, VkNN-join requires a high computational cost for constructing the Voronoi diagram. Moreover, the computational overhead of the VkNN-join is high because the number of the candidate cells increases as the value of the k increases. In order to solve these problems, we propose a MapReduce-based kNN-join query processing algorithm for analyzing the large amounts of data. Using the seed-based dynamic partitioning, our algorithm can reduce the overhead for constructing the index structure. Also, it can reduce the computational overhead to find the candidate partitions by selecting corresponding partitions with the average distance between two seeds. We show that our algorithm has better performance than the existing scheme in terms of the query processing time.
Assumption-based truth maintenance system (ATMS) is a tool that maintains the reasoning process of inference engine. It also supports non-monotonic reasoning based on dependency-directed backtracking. Bookkeeping all the reasoning processes allows it to quickly check and retract beliefs and efficiently provide solutions for problems with large search space. However, the amount of data has been exponentially grown recently, making it impossible to use a single machine for solving large-scale problems. The maintaining process for solving such problems can lead to high computation cost due to large memory overhead. To overcome this drawback, this paper presents an approach towards incrementally maintaining the reasoning process of inference engine on cluster using Spark. It maintains data dependencies such as assumption, label, environment and justification on a cluster of machines in parallel and efficiently updates changes in a large amount of inferred datasets. We deployed the proposed ATMS on a cluster with 5 machines, conducted OWL/RDFS reasoning over University benchmark data (LUBM) and evaluated our system in terms of its performance and functionalities such as assertion, explanation and retraction. In our experiments, the proposed system performed the operations in a reasonably short period of time for over 80GB inferred LUBM2000 dataset.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.