• Title/Summary/Keyword: data-driven approach

Search Result 315, Processing Time 0.027 seconds

Comparison of event tree/fault tree and convolution approaches in calculating station blackout risk in a nuclear power plant

  • Man Cheol Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.141-146
    • /
    • 2024
  • Station blackout (SBO) risk is one of the most significant contributors to nuclear power plant risk. In this paper, the sequence probability formulas derived by the convolution approach are compared with those derived by the conventional event tree/fault tree (ET/FT) approach for the SBO situation in which emergency diesel generators fail to start. The comparison identifies what makes the ET/FT approach more conservative and raises the issue regarding the mission time of a turbine-driven auxiliary feedwater pump (TDP), which suggests a possible modeling improvement in the ET/FT approach. Monte Carlo simulations with up-to-date component reliability data validate the convolution approach. The sequence probability of an alternative alternating current diesel generator (AAC DG) failing to start and the TDP failing to operate owing to battery depletion contributes most to the SBO risk. The probability overestimation of the scenario in which the AAC DG fails to run and the TDP fails to operate owing to battery depletion contributes most to the SBO risk overestimation determined by the ET/FT approach. The modification of the TDP mission time renders the sequence probabilities determined by the ET/FT approach more consistent with those determined by the convolution approach.

Bitcoin Algorithm Trading using Genetic Programming

  • Monira Essa Aloud
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.210-218
    • /
    • 2023
  • The author presents a simple data-driven intraday technical indicator trading approach based on Genetic Programming (GP) for return forecasting in the Bitcoin market. We use five trend-following technical indicators as input to GP for developing trading rules. Using data on daily Bitcoin historical prices from January 2017 to February 2020, our principal results show that the combination of technical analysis indicators and Artificial Intelligence (AI) techniques, primarily GP, is a potential forecasting tool for Bitcoin prices, even outperforming the buy-and-hold strategy. Sensitivity analysis is employed to adjust the number and values of variables, activation functions, and fitness functions of the GP-based system to verify our approach's robustness.

TOWARD MECHANISTIC MODELING OF BOILING HEAT TRANSFER

  • Podowski, Michael Z.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.889-896
    • /
    • 2012
  • Recent progress in the computational fluid dynamics methods of two- and multiphase phase flows has already started opening up new exciting possibilities for using complete multidimensional models to simulate boiling systems. Combining this new theoretical and computational approach with novel experimental methods should dramatically improve both our understanding of the physics of boiling and the predictive capabilities of models at various scale levels. However, for the multidimensional modeling framework to become an effective predictive tool, it must be complemented with accurate mechanistic closure laws of local boiling mechanisms. Boiling heat transfer has been studied quite extensively before. However, it turns out that the prevailing approach to the analysis of experimental data for both pool boiling and forced-convection boiling has been associated with formulating correlations which normally included several adjustable coefficients rather than based on first principle models of the underlying physical phenomena. One reason for this has been the tendency (driven by practical applications and industrial needs) to formulate single expressions which encompass a broad range of conditions and fluids. This, in turn, makes it difficult to identify various specific factors which can be independently modeled for different situations. The objective of this paper is to present a mechanistic modeling concept for both pool boiling and forced-convection boiling. The proposed approach is based on theoretical first-principle concepts, and uses a minimal number of coefficients which require calibration against experimental data. The proposed models have been validated against experimental data for water and parametrically tested. Model predictions are shown for a broad range of conditions.

Data-driven Adaptive Safety Monitoring Using Virtual Subjects in Medical Cyber-Physical Systems: A Glucose Control Case Study

  • Chen, Sanjian;Sokolsky, Oleg;Weimer, James;Lee, Insup
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.3
    • /
    • pp.75-84
    • /
    • 2016
  • Medical cyber-physical systems (MCPS) integrate sensors, actuators, and software to improve patient safety and quality of healthcare. These systems introduce major challenges to safety analysis because the patient's physiology is complex, nonlinear, unobservable, and uncertain. To cope with the challenge that unidentified physiological parameters may exhibit short-term variances in certain clinical scenarios, we propose a novel run-time predictive safety monitoring technique that leverages a maximal model coupled with online training of a computational virtual subject (CVS) set. The proposed monitor predicts safety-critical events at run-time using only clinically available measurements. We apply the technique to a surgical glucose control case study. Evaluation on retrospective real clinical data shows that the algorithm achieves 96% sensitivity with a low average false alarm rate of 0.5 false alarm per surgery.

Predictive Model for Evaluating Startup Technology Efficiency: A Data Envelopment Analysis (DEA) Approach Focusing on Companies Selected by TIPS, a Private-led Technology Startup Support Program

  • Jeongho Kim;Hyunmin Park;JooHee Oh
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.167-179
    • /
    • 2024
  • This study addresses the challenge of objectively evaluating the performance of early-stage startups amidst limited information and uncertainty. Focusing on companies selected by TIPS, a leading private sector-driven startup support policy in Korea, the research develops a new indicator to assess technological efficiency. By analyzing various input and output variables collected from Crunchbase and KIND (Korea Investor's Network for Disclosure System) databases, including technology use metrics, patents, and Crunchbase rankings, the study derives technological efficiency for TIPS-selected startups. A prediction model is then developed utilizing machine learning techniques such as Random Forest and boosting (XGBoost) to classify startups into efficiency percentiles (10th, 30th, and 50th). The results indicate that prediction accuracy improves with higher percentiles based on the technical efficiency index, providing valuable insights for evaluating and predicting startup performance in early markets characterized by information scarcity and uncertainty. Future research directions should focus on assessing growth potential and sustainability using the developed classification and prediction models, aiding investors in making data-driven investment decisions and contributing to the development of the early startup ecosystem.

Effects of Mongolian Startup's Motivation, Self-Efficacy and Entrepreneurial Orientation on Performance: gender differences (몽골 창업가들의 창업동기, 자기효능감 및 기업가지향성과 창업성과간의 관계: 성별 차이)

  • Delgermaa Otgon;Shin-Hyung Kang;Sangmoon Park
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.4
    • /
    • pp.123-134
    • /
    • 2022
  • Purpose - The purpose of this study is to investigate the effects of entrepreneurial motivation, self-efficacy, and entrepreneurial orientation on the performance of Mongolian entrepreneurs. Design/methodology/approach This study collected data from a survey on 236 entrepreneurs in Mongolia and investigate research hypotheses by empirical analysis. Findings It was found that entrepreneurial motivation (independence, opportunity-driven, achievement motivation) had a positive effect on the startups' performances, and necessity-driven motivation did not have a significant effect on the startups' performances. Entrepreneurial self-efficacy and entrepreneurial orientation had a positive effect on performance of startups. There are differences by gender on the relationships between entrepreneurial motivations and startup performances. Research implications or Originality This paper investigates the effects of entrepreneurial motivation, self-efficacy, and entrepreneurial orientation on the performance of startups in Mongolian.

Analysis of the Impact of Satellite Remote Sensing Information on the Prediction Performance of Ungauged Basin Stream Flow Using Data-driven Models (인공위성 원격 탐사 정보가 자료 기반 모형의 미계측 유역 하천유출 예측성능에 미치는 영향 분석)

  • Seo, Jiyu;Jung, Haeun;Won, Jeongeun;Choi, Sijung;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.147-159
    • /
    • 2024
  • Lack of streamflow observations makes model calibration difficult and limits model performance improvement. Satellite-based remote sensing products offer a new alternative as they can be actively utilized to obtain hydrological data. Recently, several studies have shown that artificial intelligence-based solutions are more appropriate than traditional conceptual and physical models. In this study, a data-driven approach combining various recurrent neural networks and decision tree-based algorithms is proposed, and the utilization of satellite remote sensing information for AI training is investigated. The satellite imagery used in this study is from MODIS and SMAP. The proposed approach is validated using publicly available data from 25 watersheds. Inspired by the traditional regionalization approach, a strategy is adopted to learn one data-driven model by integrating data from all basins, and the potential of the proposed approach is evaluated by using a leave-one-out cross-validation regionalization setting to predict streamflow from different basins with one model. The GRU + Light GBM model was found to be a suitable model combination for target basins and showed good streamflow prediction performance in ungauged basins (The average model efficiency coefficient for predicting daily streamflow in 25 ungauged basins is 0.7187) except for the period when streamflow is very small. The influence of satellite remote sensing information was found to be up to 10%, with the additional application of satellite information having a greater impact on streamflow prediction during low or dry seasons than during wet or normal seasons.

A Multi-Model Based Noisy Speech Recognition Using the Model Compensation Method (다 모델 방식과 모델보상을 통한 잡음환경 음성인식)

  • Chung, Young-Joo;Kwak, Seung-Woo
    • MALSORI
    • /
    • no.62
    • /
    • pp.97-112
    • /
    • 2007
  • The speech recognizer in general operates in noisy acoustical environments. Many research works have been done to cope with the acoustical variations. Among them, the multiple-HMM model approach seems to be quite effective compared with the conventional methods. In this paper, we consider a multiple-model approach combined with the model compensation method and investigate the necessary number of the HMM model sets through noisy speech recognition experiments. By using the data-driven Jacobian adaptation for the model compensation, the multiple-model approach with only a few model sets for each noise type could achieve comparable results with the re-training method.

  • PDF

Text-driven Speech Animation with Emotion Control

  • Chae, Wonseok;Kim, Yejin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3473-3487
    • /
    • 2020
  • In this paper, we present a new approach to creating speech animation with emotional expressions using a small set of example models. To generate realistic facial animation, two example models called key visemes and expressions are used for lip-synchronization and facial expressions, respectively. The key visemes represent lip shapes of phonemes such as vowels and consonants while the key expressions represent basic emotions of a face. Our approach utilizes a text-to-speech (TTS) system to create a phonetic transcript for the speech animation. Based on a phonetic transcript, a sequence of speech animation is synthesized by interpolating the corresponding sequence of key visemes. Using an input parameter vector, the key expressions are blended by a method of scattered data interpolation. During the synthesizing process, an importance-based scheme is introduced to combine both lip-synchronization and facial expressions into one animation sequence in real time (over 120Hz). The proposed approach can be applied to diverse types of digital content and applications that use facial animation with high accuracy (over 90%) in speech recognition.

Differential Authentication Scheme for Electric Charging System through Light Gradient Boosting Machine

  • Byung-Hyun Lim;Ismatov, Akobir;Ki-Il Kim
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.3
    • /
    • pp.199-206
    • /
    • 2024
  • The network security of Plug-and-Charge (PnC) technology in electric vehicle charging systems is typically achieved through the well-known Transport Layer Security (TLS) protocol, which causes high communication overhead. To reduce this overhead, a differential authentication method employing different schemes for individual users has been proposed. However, decisions use a simple threshold approach and no quantitative performance evaluation should be made. In this study, we determined each user's trust using several machine learning algorithms with their charging patterns and compared them. The experimental results reveal that the proposed approach outperforms the conventional approach by 41.36% in terms of round-trip time efficiency, demonstrating its effectiveness in reducing the TLS overhead. In addition, we show the simulation results for three user authentication methods and capture the performance variations under CPU busy waiting scenarios.