• Title/Summary/Keyword: data-based model

Search Result 21,105, Processing Time 0.05 seconds

Linear Input/output Data-based Predictive Control with Integral Property

  • Song, In-Hyoup;Yoo, Kee-Youn;Park, Myung-Jung;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.101.5-101
    • /
    • 2001
  • A linear input/output data-based predictive control with integral action is developed. The control input is obtained directly from the input/output data in a single step. However, the state estimation in subspace identification gives a biased estimate and there is model mismatch when the controller is applied to a nonlinear process. To overcome such difficulties, we add integral action to a linear input/output data-based predictive controller by augmenting the integrated white noise disturbance model and use each of best linear unbiased estimation(BLUE) filter and Kalman filter as a stochastic observer for the unmeasured disturbance. When applied to a continuous styrene polymerization reactor the proposed controller demonstrates.

  • PDF

Case of Collaborative Product Development Practice based on Product Data Management System in Non-face-to-face Environment (비대면 환경에서 제품자료관리 시스템 기반 협동제품개발 실습과제 운영 사례)

  • Do, Namchul
    • Journal of Engineering Education Research
    • /
    • v.25 no.1
    • /
    • pp.46-54
    • /
    • 2022
  • This study attempted non-face-to-face collaborative product development practice that can respond to the spread of COVID-19 by expanding existing product data management system-based product development practice. For the complete non-face-to-face product development practice, it utilized prototype development using a 3D paper model, an online class management system and social media for classes and meetings. As a result of applying the non-face-to-face method, product developments of 26 practice teams have been completed without any failures. Therefore, through this study, the author can confirm that it is possible to provide the complete non-face-to-face collaborative product development practice based on product data management systems.

Performance Improvement in the Multi-Model Based Speech Recognizer for Continuous Noisy Speech Recognition (연속 잡음 음성 인식을 위한 다 모델 기반 인식기의 성능 향상에 대한 연구)

  • Chung, Yong-Joo
    • Speech Sciences
    • /
    • v.15 no.2
    • /
    • pp.55-65
    • /
    • 2008
  • Recently, the multi-model based speech recognizer has been used quite successfully for noisy speech recognition. For the selection of the reference HMM (hidden Markov model) which best matches the noise type and SNR (signal to noise ratio) of the input testing speech, the estimation of the SNR value using the VAD (voice activity detection) algorithm and the classification of the noise type based on the GMM (Gaussian mixture model) have been done separately in the multi-model framework. As the SNR estimation process is vulnerable to errors, we propose an efficient method which can classify simultaneously the SNR values and noise types. The KL (Kullback-Leibler) distance between the single Gaussian distributions for the noise signal during the training and testing is utilized for the classification. The recognition experiments have been done on the Aurora 2 database showing the usefulness of the model compensation method in the multi-model based speech recognizer. We could also see that further performance improvement was achievable by combining the probability density function of the MCT (multi-condition training) with that of the reference HMM compensated by the D-JA (data-driven Jacobian adaptation) in the multi-model based speech recognizer.

  • PDF

Dynamic Model Identification of Quadrotor UAV based on Frequency-Domain Approach (주파수 영역 기반 쿼드로터 무인기 운동 모델 식별)

  • Jung, Sunggoo;Kim, Sung-Yug;Jung, Yeundeuk;Kim, Eung-Tai
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.22-29
    • /
    • 2015
  • Quadrotor is widely used in variable application nowadays. Due to its inherent unstable characteristics, control system to augment the stability is essential for quadrotor operation. To design control system and verify its performance through simulation, accurate dynamic model is required. Quadrotor dynamic model is simply compared with conventional rotorcraft such as helicopter. However, the accurate dynamic model of quadrotor is not easy to develop because of the highly correlated aerodynamic effect of each rotor. In this paper, quadrotor dynamic model is identified from the flight data using frequency domain approach. Flight test of quadrotor is performed in closed loop configuration with stability augmentation system included. Frequency sweep input is applied in each of lateral, longitudinal, yaw and heave axis separately. The bare dynamic model is identified from the flight data of quadrotor responses and thrust measurement through Pulse Width Modulation(PWM) data. The frequency responses of identified model match well with those of flight data, and time responses of identified model for doublet input in each axis are also shown to agree with flight data.

Model-based Fault Diagnosis Using Quantized Vibration Signals (양자화된 진동신호를 이용한 모델기반 고장진단)

  • Kim, Do-Hyun;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.279-284
    • /
    • 2005
  • Knowledge based fault diagnosis has a limitation in determining the cause and scheme for the fault, because it detects faults from signal pattern only Therefore, model-based fault diagnosis is requested to determine the fault by analyzing output of the equipment from its dynamic model. This research shows a method how to devise the automaton of system as a model for normal and faulty condition through the reduction of handling data by quantization of vibration signals and the example which is concerning to the bearing of ATM. The developed model based fault diagnosis was applied to detect the faulty bearing of ATM, which results.

  • PDF

A Study on Trade Area Analysis with the Use of Modified Probability Model (변형확률모델을 활용한 소매업의 상권분석 방안에 관한 연구)

  • Jin, Chang-Beom;Youn, Myoung-Kil
    • Journal of Distribution Science
    • /
    • v.15 no.6
    • /
    • pp.77-96
    • /
    • 2017
  • Purpose - This study aims to develop correspondence strategies to the environment change in domestic retail store types. Recently, new types of retails have emerged in retail industries. Therefore, trade area platform has developed focusing on the speed of data, no longer trade area from district border. Besides, 'trade area smart' brings about change in retail types with the development of giga internet. Thus, context shopping is changing the way of consumers' purchase pattern through data capture, technology capability, and algorithm development. For these reasons, the sales estimation model has been shown to be flawed using the notion of former scale and time, and it is necessary to construct a new model. Research design, data, and methodology - This study focuses on measuring retail change in large multi-shopping mall for the outlook for retail industry and competition for trade area with the theoretical background understanding of retail store types and overall domestic retail conditions. The competition among retail store types are strong, whereas the borders among them are fading. There is a greater need to analyze on a new model because sales expectation can be hard to get with business area competition. For comprehensive research, therefore, the research method based on the statistical analysis was excluded, and field survey and literature investigation method were used to identify problems and propose an alternative. In research material, research fidelity has improved with complementing research data related with retail specialists' as well as department stores. Results - This study analyzed trade area survival and its pattern through sales estimation and empirical studies on trade areas. The sales estimation, based on Huff model system, counts the number of households shopping absorption expectation from trade areas. Based on the results, this paper estimated sales scale, and then deducted modified probability model. Conclusions - In times of retail store chain destruction and off-line store reorganization, modified Huff model has problems in estimating sales. Transformation probability model, supplemented by the existing problems, was analyzed to be more effective in competitiveness business condition. This study offers a viable alternative to figure out related trade areas' sale estimation by reconstructing new-modified probability model. As a result, the future task is to enlarge the borders from IT infrastructure with data and evidence based business into DT infrastructure.

Research on the development of an AI-based customized learning support model : Focusing on the university class environment (인공지능 기반 맞춤형 학습 지원 모형 개발 연구 : 대학교 수업 환경을 중심으로)

  • Euncheol Lee;Gayoung Lee
    • Journal of Christian Education in Korea
    • /
    • v.77
    • /
    • pp.225-249
    • /
    • 2024
  • Research Purpose : Based on artificial intelligence, this study considers learners' characteristics, learning content, and individual learning, and analyzes the collected learning data to develop a model that supports customized learning for individual learners. Research content and method : In order to achieve the research purpose, the literature was analyzed to investigate the structure of customized learning support, learning data analysis, and learning activities, and based on the investigated data, the area and detailed components of the customized learning support model were derived. did. A draft model was constructed through literature analysis, and the first expert Delphi survey was conducted on the draft model with five experts. The model was revised by reflecting the results of the first Delphi, and the validity of the revised model was verified through the second expert Delphi. The model was elaborated through expert Delphi, and the final model was constructed through this. Conclusion and Recommendation : Through research, customized learning support area, class management system area, and learning analysis data area were formed, and detailed elements were derived for each area. The results of this study provide basic data that can be used as a reference for constructing a customized learning support system based on artificial intelligence, taking into account the university's class environment.

A Nonparametric Additive Risk Model Based On Splines

  • Park, Cheol-Yong
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.49-50
    • /
    • 2006
  • We consider a nonparametric additive risk model that are based on splines. This model consists of both purely and smoothly nonparametric components. As an estimation method of this model, we use the weighted least square estimation by Huffer and McKeague (1991). We provide an illustrative example as well as a simulation study that compares the performance of our method with the ordinary least square method.

  • PDF

Trends in standardization of IoT based electrical safety technology (사물인터넷 기반 전기안전 기술 및 표준화 동향)

  • An, Y.Y.;Kim, S.H.;Jeong, S.J.;Kang, H.J.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.1
    • /
    • pp.49-59
    • /
    • 2020
  • This paper describes an IoT-based electrical safety management system for managing the electrical power distribution systems in factories or buildings and for managing private electrical devices in apartment complex. The IoT-based electrical safety management system collects IoT data from the electrical facilities or devices to provide various electrical safety services. In some cases, it uses an IoT adaptor to collect data from legacy facilities. By monitoring and analyzing the IoT data, it is possible to provide protection from and prevent electrical hazards. In addition, an IoT-based electrical safety management system can benefit from using the IoT identification system and standardized data model of the electrical facilities and devices. An IoT identification system is used to increase manageability of large-scale electrical facilities which consists of numerous IoT devices. A standardized data model is used to support interoperability. This paper also explores some international and Korean standards related to IoT-based electrical safety management.

DNA Based Cloud Storage Security Framework Using Fuzzy Decision Making Technique

  • Majumdar, Abhishek;Biswas, Arpita;Baishnab, Krishna Lal;Sood, Sandeep K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3794-3820
    • /
    • 2019
  • In recent years, a cloud environment with the ability to detect illegal behaviours along with a secured data storage capability is much needed. This study presents a cloud storage framework, wherein a 128-bit encryption key has been generated by combining deoxyribonucleic acid (DNA) cryptography and the Hill Cipher algorithm to make the framework unbreakable and ensure a better and secured distributed cloud storage environment. Moreover, the study proposes a DNA-based encryption technique, followed by a 256-bit secure socket layer (SSL) to secure data storage. The 256-bit SSL provides secured connections during data transmission. The data herein are classified based on different qualitative security parameters obtained using a specialized fuzzy-based classification technique. The model also has an additional advantage of being able to decide on selecting suitable storage servers from an existing pool of storage servers. A fuzzy-based technique for order of preference by similarity to ideal solution (TOPSIS) multi-criteria decision-making (MCDM) model has been employed for this, which can decide on the set of suitable storage servers on which the data must be stored and results in a reduction in execution time by keeping up the level of security to an improved grade.