• Title/Summary/Keyword: data-based model

Search Result 21,105, Processing Time 0.048 seconds

Martial Arts Moves Recognition Method Based on Visual Image

  • Husheng, Zhou
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.813-821
    • /
    • 2022
  • Intelligent monitoring, life entertainment, medical rehabilitation, and other fields are only a few examples where visual image technology is becoming increasingly sophisticated and playing a significant role. Recognizing Wushu, or martial arts, movements through the use of visual image technology helps promote and develop Wushu. In order to segment and extract the signals of Wushu movements, this study analyzes the denoising of the original data using the wavelet transform and provides a sliding window data segmentation technique. Wushu movement The Wushu movement recognition model is built based on the hidden Markov model (HMM). The HMM model is trained and taught with the help of the Baum-Welch algorithm, which is then enhanced using the frequency weighted training approach and the mean training method. To identify the dynamic Wushu movement, the Viterbi algorithm is used to determine the probability of the optimal state sequence for each Wushu movement model. In light of the foregoing, an HMM-based martial arts movements recognition model is developed. The recognition accuracy of the HMM model increases to 99.60% when the number of samples is 4,000, which is greater than the accuracy of the SVM (by 0.94%), the CNN (by 1.12%), and the BP (by 1.14%). From what has been discussed, it appears that the suggested system for detecting martial arts acts is trustworthy and effective, and that it may contribute to the growth of martial arts.

Data Bias Optimization based Association Reasoning Model for Road Risk Detection (도로 위험 탐지를 위한 데이터 편향성 최적화 기반 연관 추론 모델)

  • Ryu, Seong-Eun;Kim, Hyun-Jin;Koo, Byung-Kook;Kwon, Hye-Jeong;Park, Roy C.;Chung, Kyungyong
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.9
    • /
    • pp.1-6
    • /
    • 2020
  • In this study, we propose an association inference model based on data bias optimization for road hazard detection. This is a mining model based on association analysis to collect user's personal characteristics and surrounding environment data and provide traffic accident prevention services. This creates transaction data composed of various context variables. Based on the generated information, a meaningful correlation of variables in each transaction is derived through correlation pattern analysis. Considering the bias of classified categorical data, pruning is performed with optimized support and reliability values. Based on the extracted high-level association rules, a risk detection model for personal characteristics and driving road conditions is provided to users. This enables traffic services that overcome the data bias problem and prevent potential road accidents by considering the association between data. In the performance evaluation, the proposed method is excellently evaluated as 0.778 in accuracy and 0.743 in the Kappa coefficient.

Artificial Neural Network-based Thermal Environment Prediction Model for Energy Saving of Data Center Cooling Systems (데이터센터 냉각 시스템의 에너지 절약을 위한 인공신경망 기반 열환경 예측 모델)

  • Chae-Young Lim;Chae-Eun Yeo;Seong-Yool Ahn;Sang-Hyun Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.883-888
    • /
    • 2023
  • Since data centers are places that provide IT services 24 hours a day, 365 days a year, data center power consumption is expected to increase to approximately 10% by 2030, and the introduction of high-density IT equipment will gradually increase. In order to ensure the stable operation of IT equipment, various types of research are required to conserve energy in cooling and improve energy management. This study proposes the following process for energy saving in data centers. We conducted CFD modeling of the data center, proposed an artificial intelligence-based thermal environment prediction model, compared actual measured data, the predicted model, and the CFD results, and finally evaluated the data center's thermal management performance. It can be seen that the predicted values of RCI, RTI, and PUE are also similar according to the normalization used in the normalization method. Therefore, it is judged that the algorithm proposed in this study can be applied and provided as a thermal environment prediction model applied to data centers.

Predicting nutrient excretion from dairy cows on smallholder farms in Indonesia using readily available farm data

  • Al Zahra, Windi;van Middelaar, Corina E.;de Boer, Imke J.M;Oosting, Simon J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.2039-2049
    • /
    • 2020
  • Objective: This study was conducted to provide models to accurately predict nitrogen (N) and phosphorus (P) excretion of dairy cows on smallholder farms in Indonesia based on readily available farm data. Methods: The generic model in this study is based on the principles of the Lucas equation, describing the relation between dry matter intake (DMI) and faecal N excretion to predict the quantity of faecal N (QFN). Excretion of urinary N and faecal P were calculated based on National Research Council recommendations for dairy cows. A farm survey was conducted to collect input parameters for the models. The data set was used to calibrate the model to predict QFN for the specific case. The model was validated by comparing the predicted quantity of faecal N with the actual quantity of faecal N (QFNACT) based on measurements, and the calibrated model was compared to the Lucas equation. The models were used to predict N and P excretion of all 144 dairy cows in the data set. Results: Our estimate of true N digestibility equalled the standard value of 92% in the original Lucas equation, whereas our estimate of metabolic faecal N was -0.60 g/100 g DMI, with the standard value being -0.61 g/100 g DMI. Results of the model validation showed that the R2 was 0.63, the MAE was 15 g/animal/d (17% from QFNACT), and the RMSE was 20 g/animal/d (22% from QFNACT). We predicted that the total N excretion of dairy cows in Indonesia was on average 197 g/animal/d, whereas P excretion was on average 56 g/animal/d. Conclusion: The proposed models can be used with reasonable accuracy to predict N and P excretion of dairy cattle on smallholder farms in Indonesia, which can contribute to improving manure management and reduce environmental issues related to nutrient losses.

Fusion of LIDAR Data and Aerial Images for Building Reconstruction

  • Chen, Liang-Chien;Lai, Yen-Chung;Rau, Jiann-Yeou
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.773-775
    • /
    • 2003
  • From the view point of data fusion, we integrate LIDAR data and digital aerial images to perform 3D building modeling in this study. The proposed scheme comprises two major parts: (1) building block extraction and (2) building model reconstruction. In the first step, height differences are analyzed to detect the above ground areas. Color analysis is then performed for the exclusion of tree areas. Potential building blocks are selected first followed by the refinement of building areas. In the second step, through edge detection and extracting the height information from LIDAR data, accurate 3D edges in object space is calculated. The accurate 3D edges are combined with the already developed SMS method for building modeling. LIDAR data acquired by Leica ALS 40 in Hsin-Chu Science-based Industrial Park of north Taiwan will be used in the test.

  • PDF

A Bayesian approach for dynamic Nelson-Siegel yield curve modeling on SOFR term rate data (SOFR 기간 데이터에 대한 동적 넬슨-시겔 이자율 곡선의 베이지안 접근법)

  • Seong Ho Im;Beom Seuk Hwang
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.4
    • /
    • pp.349-360
    • /
    • 2023
  • Dynamic Nelson-Siegel model is widely used in modeling term structure of interest rates for financial products. In this study, we explain dynamic Nelson-Siegel model from the perspective of the state space model and explore Bayesian approaches that can be applied to that model. By applying SOFR term rate data to the Bayesian dynamic Nelson-Siegel model, we confirm the performance and compare it with other competing models such as Vasicek model, dynamic Nelson-Siegel model based on the frequentist approach, and the two-factor Bayesian dynamic Nelson-Siegel model. We also confirm that the Bayesian dynamic Nelson-Siegel model outperformed its competitors on SOFR term rate data based on RMSE.

Developing Data Fusion Method for Indoor Space Modeling based on IndoorGML Core Module

  • Lee, Jiyeong;Kang, Hye Young;Kim, Yun Ji
    • Spatial Information Research
    • /
    • v.22 no.2
    • /
    • pp.31-44
    • /
    • 2014
  • According to the purpose of applications, the application program will utilize the most suitable data model and 3D modeling data would be generated based on the selected data model. In these reasons, there are various data sets to represent the same geographical features. The duplicated data sets bring serious problems in system interoperability and data compatibility issues, as well in finance issues of geo-spatial information industries. In order to overcome the problems, this study proposes a spatial data fusion method using topological relationships among spatial objects in the feature classes, called Topological Relation Model (TRM). The TRM is a spatial data fusion method implemented in application-level, which means that the geometric data generated by two different data models are used directly without any data exchange or conversion processes in an application system to provide indoor LBSs. The topological relationships are defined and described by the basic concepts of IndoorGML. After describing the concepts of TRM, experimental implementations of the proposed data fusion method in 3D GIS are presented. In the final section, the limitations of this study and further research are summarized.

UNCERTAINTY ANALYSIS OF DATA-BASED MODELS FOR ESTIMATING COLLAPSE MOMENTS OF WALL-THINNED PIPE BENDS AND ELBOWS

  • Kim, Dong-Su;Kim, Ju-Hyun;Na, Man-Gyun;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.323-330
    • /
    • 2012
  • The development of data-based models requires uncertainty analysis to explain the accuracy of their predictions. In this paper, an uncertainty analysis of the support vector regression (SVR) model, which is a data-based model, was performed because previous research showed that the SVR method accurately estimates the collapse moments of wall-thinned pipe bends and elbows. The uncertainty analysis method used in this study was an analytic uncertainty analysis method, and estimates with a 95% confidence interval were obtained for 370 test data points. From the results, the prediction interval (PI) was very narrow, which means that the predicted values are quite accurate. Therefore, the proposed SVR method can be used effectively to assess and validate the integrity of the wall-thinned pipe bends and elbows.

Bearing Fault Diagnosis Using Fuzzy Inference Optimized by Neural Network and Genetic Algorithm

  • Lee, Hong-Hee;Nguyen, Ngoc-Tu;Kwon, Jeong-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.353-357
    • /
    • 2007
  • The bearing diagnostics method is presented in this paper using fuzzy inference based on vibration data. Both time-domain and frequency-domain features are used as input data for bearing fault detection. The Adaptive Network based Fuzzy Inference System (ANFIS) and Genetic Algorithm (GA) have been proposed to select the fuzzy model input and output parameters. Training results give the optimized fuzzy inference system for bearing diagnosis based on measured vibration data. The result is also tested with other sets of bearing data to illustrate the reliability of the chosen model.

Performance Analysis of Mobile Home Network Based on Bluetooth (블루투스 기반 이동 Home Network의 성능 분석)

  • Park Hong-Seong;Jeong Myoung-Soon
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.1 no.1
    • /
    • pp.51-64
    • /
    • 2002
  • This paper analyzes performance measures of a Bluetooth_based mobile home network system. The home network system consists of terminals with Bluetooth interfaces, access points (AP), a home PC, and a gateway A mobile host in wireless terminals uses Mobile IP for supporting the mobility This paper considers four types of data traffic, which are new connection traffic, handoff traffic, Internet data traffic, and control data traffic and suggests a queueing system model of the home network system, where the AP and the home PC are modeled as M/G/1 with four priority queues and the gateway is modeled as M/G/1 with a single queue The generation rate and service time of individual traffic influence their performance measures. Based ell the suggested model, we propose the elapsed time of data traffic in terms of the number of cells, the number of Home PCs, arrival rates of four types of traffic and the service rates of AP/Home PCs/Gateway To analyze influences on the elapsed time with respect to arrival rate of four types of traffic, some examples are given.

  • PDF