• Title/Summary/Keyword: data-based model

Search Result 21,105, Processing Time 0.048 seconds

Learner Activity Modeling Based on Teaching and Learning Activities Data (교수-학습 활동 데이터기반 학습자 활동 모델링)

  • Kim, Kyungrog
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.9
    • /
    • pp.411-418
    • /
    • 2016
  • Learning analytic has been utilized to helps us to successfully complete the course by using the interaction of the teacher and the learner data generated from the teaching and learning support system. In other words, Learning analytic is a method in order to understand the activities of learners. In the learning analytic, the data model is needed in order to utilize the more useful for teaching and learning activities data. Therefore, in this study, we propose a user centric data model of learning styles and learning objects. This model is expressed by aggregating of user learning style, learning objects, and learning activities. The proposed model is significant that laid the foundation for analyzing the activities of the learners in course units.

Discrimination model for cultivation origin of paper mulberry bast fiber and Hanji based on NIR and MIR spectral data combined with PLS-DA (닥나무 인피섬유와 한지의 원산지 판별모델 개발을 위한 NIR 및 MIR 스펙트럼 데이터의 PLS-DA 적용)

  • Jang, Kyung-Ju;Jung, So-Yoon;Go, In-Hee;Jeong, Seon-Hwa
    • Analytical Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.7-16
    • /
    • 2019
  • The objective of this study was the development of a discrimination model for the cultivational origin of paper mulberry bast fiber and Hanji using near infrared (NIR) and mid infrared (MIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA). Paper mulberry bast fiber was purchased in 10 different regions of Korea, and used to make Hanji. PLS-DA was performed using pre-treated FT-NIR and FT-MIR spectral data for paper mulberry bast fiber and Hanji. PLS-DA of paper mulberry bast fiber and Hanji samples, using FT-NIR spectral data, showed 100 % performance in cross validation and the confusion matrix (accuracy, sensitivity, and specificity). The discrimination models showed four regional groups which demonstrated clearer separation and much superior score plots in the NIR spectral data-based model than in the MIR spectral data-based model. Furthermore, the discrimination model based on the NIR spectral data of paper mulberry bast fiber had highly similar score morphology to that of the discrimination model based on the NIR spectral data of Hanji.

Optimization Model for the Mixing Ratio of Coatings Based on the Design of Experiments Using Big Data Analysis (빅데이터 분석을 활용한 실험계획법 기반의 코팅제 배합비율 최적화 모형)

  • Noh, Seong Yeo;Kim, Young-Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.10
    • /
    • pp.383-392
    • /
    • 2014
  • The research for coatings is one of the most popular and active research in the polymer industry. For the coatings, electronics industry, medical and optical fields are growing more important. In particular, the trend is the increasing of the technical requirements for the performance and accuracy of the coatings by the development of automotive and electronic parts. In addition, the industry has a need of more intelligent and automated system in the industry is increasing by introduction of the IoT and big data analysis based on the environmental information and the context information. In this paper, we propose an optimization model for the design of experiments based coating formulation data objects using the Internet technologies and big data analytics. In this paper, the coating formulation was calculated based on the best data analysis is based on the experimental design, modify the operator with respect to the error caused based on the coating formulation used in the actual production site data and the corrected result data. Further optimization model to correct the reference value by leveraging big data analysis and Internet of things technology only existing coating formulation is applied as the reference data using a manufacturing environment and context information retrieval in color and quality, the most important factor in maintaining and was derived. Based on data obtained from an experiment and analysis is improving the accuracy of the combination data and making it possible to give a LOT shorter working hours per data. Also the data shortens the production time due to the reduction in the delivery time per treatment and It can contribute to cost reduction or the like defect rate reduced. Further, it is possible to obtain a standard data in the manufacturing process for the various models.

Development of Web-GIS based SWAT Data Generation System (Web-GIS 기반 SWAT 자료 공급 시스템 구축)

  • Nam, Won-Ho;Choi, Jin-Yong;Hong, Eun-Mi;Kim, Hak-Kwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • Watershed topographical data is essential for the management for water resources and watershed management in terms of hydrology analysis. Collecting watershed topographical and meteorological data is the first step for simulating hydrological models and calculating hydrological components. This study describes a specialized Web-based Geographic Information Systems, Soil Water Assessment Tool model data generation system, which was developed to support SWAT model operation using Web-GIS capability for map browsing, online watershed delineation and topographical and meteorological data extraction. This system tested its operability extracting watershed topographical and meteorological data in real time and the extracted spatial and weather data were seamlessly imported to ArcSWAT system demonstrating its usability. The Web-GIS would be useful to users who are willing to operate SWAT models for the various watershed management purposes in terms of spatial and weather preparing.

Comparison of tree-based ensemble models for regression

  • Park, Sangho;Kim, Chanmin
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.5
    • /
    • pp.561-589
    • /
    • 2022
  • When multiple classifications and regression trees are combined, tree-based ensemble models, such as random forest (RF) and Bayesian additive regression trees (BART), are produced. We compare the model structures and performances of various ensemble models for regression settings in this study. RF learns bootstrapped samples and selects a splitting variable from predictors gathered at each node. The BART model is specified as the sum of trees and is calculated using the Bayesian backfitting algorithm. Throughout the extensive simulation studies, the strengths and drawbacks of the two methods in the presence of missing data, high-dimensional data, or highly correlated data are investigated. In the presence of missing data, BART performs well in general, whereas RF provides adequate coverage. The BART outperforms in high dimensional, highly correlated data. However, in all of the scenarios considered, the RF has a shorter computation time. The performance of the two methods is also compared using two real data sets that represent the aforementioned situations, and the same conclusion is reached.

A STUDY ON BIM-BASED 5D SIMULATION IN WEB ENVIRONMENT

  • Jae-Bok Lim;Jae-Hong Ahn;Ju-Hyung Kim;Jae-Jun Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.169-172
    • /
    • 2013
  • Building Information Modeling (BIM) is an effective decision-making platform that helps to save project cost and enhance quality of construction. By generating and linking a wide variety of objects data, BIM can be effectively utilized, and it should be ensured that object properties maintain consistency throughout the project period of design, estimates, construction, maintenance and repair. This study examined how to utilize BIM data in a construction project, by linking cost and schedule data in web environment, to better utilize the information and maintain consistency of the BIM information. To do so, the model integrated WBS data and CBS data, linked them with BIM model to realize 5D simulation in web environment. As a result, cost and schedule data could be simultaneously acquired, and object properties-cost, schedule, location-as well. These are expected to contribute to developing a BIM-based automatic data-processing system in web environment.

  • PDF

Discrimination model using denoising autoencoder-based majority vote classification for reducing false alarm rate

  • Heonyong Lee;Kyungtak Yu;Shiu Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3716-3724
    • /
    • 2023
  • Loose parts monitoring and detecting alarm type in real Nuclear Power Plant have challenges such as background noise, insufficient alarm data, and difficulty of distinction between alarm data that occur during start and stop. Although many signal processing methods and alarm determination algorithms have been developed, it is not easy to determine valid alarm and extract the meaning data from alarm signal including background noise. To address these issues, this paper proposes a denoising autoencoder-based majority vote classification. Training and test data are prepared by acquiring alarm data from real NPP and simulation facility for data augmentation, and noisy data is reproduced by adding Gaussian noise. Using DAEs with 3, 5, 7, and 9 layers, features are extracted for each model and classified into neural networks. Finally, the results obtained from each DAE are classified by majority voting. Also, through comparison with other methods, the accuracy and the false alarm rate are compared, and the excellence of the proposed method is confirmed.

Comparative Analysis of Subsurface Estimation Ability and Applicability Based on Various Geostatistical Model (다양한 지구통계기법의 지하매질 예측능 및 적용성 비교연구)

  • Ahn, Jeongwoo;Jeong, Jina;Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.31-44
    • /
    • 2014
  • In the present study, a few of recently developed geostatistical models are comparatively studied. The models are two-point statistics based sequential indicator simulation (SISIM) and generalized coupled Markov chain (GCMC), multi-point statistics single normal equation simulation (SNESIM), and object based model of FLUVSIM (fluvial simulation) that predicts structures of target object from the provided geometric information. Out of the models, SNESIM and FLUVSIM require additional information other than conditioning data such as training map and geometry, respectively, which generally claim demanding additional resources. For the comparative studies, three-dimensional fluvial reservoir model is developed considering the genetic information and the samples, as input data for the models, are acquired by mimicking realistic sampling (i.e. random sampling). For SNESIM and FLUVSIM, additional training map and the geometry data are synthesized based on the same information used for the objective model. For the comparisons of the predictabilities of the models, two different measures are employed. In the first measure, the ensemble probability maps of the models are developed from multiple realizations, which are compared in depth to the objective model. In the second measure, the developed realizations are converted to hydrogeologic properties and the groundwater flow simulation results are compared to that of the objective model. From the comparisons, it is found that the predictability of GCMC outperforms the other models in terms of the first measure. On the other hand, in terms of the second measure, the both predictabilities of GCMC and SNESIM are outstanding out of the considered models. The excellences of GCMC model in the comparisons may attribute to the incorporations of directional non-stationarity and the non-linear prediction structure. From the results, it is concluded that the various geostatistical models need to be comprehensively considered and comparatively analyzed for appropriate characterizations.

Development of Deterioration Model for Cracks in Asphalt Pavement Using Deep Learning-Based Road Asset Monitoring System (딥러닝 기반의 도로자산 모니터링 시스템을 활용한 아스팔트 도로포장 균열률 파손모델 개발)

  • Park, Jeong-Gwon;Kim, Chang-Hak;Choi, Seung-Hyun;Do, Myung-Sik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.133-148
    • /
    • 2022
  • In this study, a road pavement crack deterioration model was developed for a pavement road sections of the Sejong-city. Data required for model development were acquired using a deep learning-based road asset monitoring system. Road pavement monitoring was conducted on the same sections in 2021 and 2022. The developed model was analyzed by dividing it into a method for estimating the annual average amount of deterioration and a method based on Bayesian Markov Mixture Hazard model. As a result of the analysis, it was found that an analysis results similar to the crack deterioration model developed based on the data acquired from the Automatic pavement investigation equipmen was derived. The results of this study are expected to be used as basic data by local governments to establish road management plans.

Development of IFC Model Extension and Drawing Representation Expression System for nD Model-Based Transposition of Complex Engineering Products and Services (복합 시설물의 nD 모델 호환을 위한 IFC 모델 확장개발 및 도면 생성 표현 체계에 관한 기초연구)

  • Kim, In-Han
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.6
    • /
    • pp.393-402
    • /
    • 2006
  • The purpose of this study is to develop mechanisms of nD model-based design by the combination of 2D drawing standards and 3D building models from the current 2D and text-based design. The aim of this study can be archived by defining the 2D model extension definitions for the IFC model development and harmonizing existing 2D standards. The paper examines 1) 3D Representation of Building Element and Building Services element, and 2D Model extension of IFC2X.2, 2) Basic development of additional 2D element that should be added to IFC model, and 3) mapping method between current 2D standard and IFC2.X2. Following this approach, the interoperability problem between 3D model and 2D drawing can be solved and finally an extended data model could be developed.