• Title/Summary/Keyword: data-based model

Search Result 21,066, Processing Time 0.052 seconds

Tactile Sensor-based Object Recognition Method Robust to Gripping Conditions Using Fast Fourier Convolution Algorithm (고속 푸리에 합성곱을 이용한 파지 조건에 강인한 촉각센서 기반 물체 인식 방법)

  • Huh, Hyunsuk;Kim, Jeong-Jung;Koh, Doo-Yoel;Kim, Chang-Hyun;Lee, Seungchul
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.365-372
    • /
    • 2022
  • The accurate object recognition is important for the precise and accurate manipulation. To enhance the recognition performance, we can use various types of sensors. In general, acquired data from sensors have a high sampling rate. So, in the past, the RNN-based model is commonly used to handle and analyze the time-series sensor data. However, the RNN-based model has limitations of excessive parameters. CNN-based model also can be used to analyze time-series input data. However, CNN-based model also has limitations of the small receptive field in early layers. For this reason, when we use a CNN-based model, model architecture should be deeper and heavier to extract useful global features. Thus, traditional methods like RN N -based and CN N -based model needs huge amount of learning parameters. Recently studied result shows that Fast Fourier Convolution (FFC) can overcome the limitations of traditional methods. This operator can extract global features from the first hidden layer, so it can be effectively used for feature extracting of sensor data that have a high sampling rate. In this paper, we propose the algorithm to recognize objects using tactile sensor data and the FFC model. The data was acquired from 11 types of objects to verify our posed model. We collected pressure, current, position data when the gripper grasps the objects by random force. As a result, the accuracy is enhanced from 84.66% to 91.43% when we use the proposed FFC-based model instead of the traditional model.

Bayesian Typhoon Track Prediction Using Wind Vector Data

  • Han, Minkyu;Lee, Jaeyong
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.241-253
    • /
    • 2015
  • In this paper we predict the track of typhoons using a Bayesian principal component regression model based on wind field data. Data is obtained at each time point and we applied the Bayesian principal component regression model to conduct the track prediction based on the time point. Based on regression model, we applied to variable selection prior and two kinds of prior distribution; normal and Laplace distribution. We show prediction results based on Bayesian Model Averaging (BMA) estimator and Median Probability Model (MPM) estimator. We analysis 8 typhoons in 2006 using data obtained from previous 6 years (2000-2005). We compare our prediction results with a moving-nest typhoon model (MTM) proposed by the Korea Meteorological Administration. We posit that is possible to predict the track of a typhoon accurately using only a statistical model and without a dynamical model.

Model- Data Based Small Area Estimation

  • Shin, Key-Il;Lee, Sang Eun
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.637-645
    • /
    • 2003
  • Small area estimation had been studied using data-based methods such as Direct, Indirect, Synthetic methods. However recently, model-based such as based on regression or time series estimation methods are applied to the study. In this paper we investigate a model-data based small area estimation which takes into account the spatial relation among the areas. The Economic Active Population Survey in 2001 are used for analysis and the results from the model based and model-data based estimation are compared with using MSE(Mean squared error), MAE(Mean absolute error) and MB(Mean bias).

A Study on the Ship Cargo Hold Structure Data Model Based on STEP (STEP을 근거로 한 선체화물창부 구조 데이터 모델에 관한 연구)

  • 박광필;이규열;조두연
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.4
    • /
    • pp.381-390
    • /
    • 1999
  • In this study, a pseudo ship structure data model for the :.hip cargo hold structure based on STEP is proposed. The proposed data model is based on Application Reference Model of AP218 Ship Structure which is the model that specifies conceptual structures and constraints used to describe the information requirements of an application. And the proposeddata model refers the Ship Common Model framework for the model architecture which is the basis for ongoing ship AP development within the ISO ship-building group and the ship product definition information model of CSDP research project for analyzing the relationship between ship structure model entities. The proposed data model includes Space, Compartment. Ship Structural System, Structural Part and Structural Feature of cargo hold. To generate this data model schema in EXPRESS format, ‘GX-Converter’was used which enables user to edit a model in EXPRESS format and convert schema file in EXPRESS format. Using this model schema, STEP physical file containing design data for ship cargo hold data structure was generated through SDAI programming. The another STEP physical file was also generated containing geometry data of ship cargo hold which was extracted and calculated by SDAI and external surface/surface intersection program. The geometry information of ship cargo hold can be then transferred to commercial CAD system, for example, Pro/Engineer. Examples of the modification of the design information are also Presented.

  • PDF

FEATURE-BASED SPATIAL DATA MODELING FOR SEAMLESS MAP, HISTORY MANAGEMENT AND REAL-TIME UPDATING

  • Kim, Hyeong-Soo;Kim, Sang-Yeob;Seo, Sung-Bo;Kim, Hi-Seok;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.433-436
    • /
    • 2008
  • A demand on the spatial data management has been rapidly increased with the introduction and diffusion process of ITS, Telematics, and Wireless Sensor Network, and many different people use the digital map that offers various thematic spatial data. Spatial data for digital map can manage to tile-based and feature-based data. The existing tile-based digital map management systems have difficult problems of data construction, history management, and updating based on a spatial object. In order to solve these problems, this paper proposed the data model for the feature-based digital map management system that is designed for feature-based seamless map, history management, real-time updating of spatial data, and analyzed the validity and utility of the proposed model.

  • PDF

A Cost Evaluation Model for Developing FHIR-based Health Information Services to Support Massive Clients

  • Seokjin Im
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.312-320
    • /
    • 2024
  • Healthcare services converged with ICT technology are improving quality of life and satisfaction through various customized services. In ICT-based medical services, data interchange between medical services is important, and HL7 FHIR, a medical data standard, enables efficient medical data interchange. FHIR-based medical information services using wireless data broadcasting can efficiently support massive clients. This paper proposes a function point model to evaluate the implementation cost of FHIR-based health information services using wireless data broadcasting. The proposed cost evaluation model can effectively evaluate the development cost by applying the complexity of converting medical data into FHIR format and the complexity of organizing indexes to efficiently support massive clients. The comparison of the proposed feature point evaluation model with simple feature points shows the efficiency and suitability of the proposed cost evaluation model.

Bias Correction of Satellite-Based Precipitation Using Convolutional Neural Network

  • Le, Xuan-Hien;Lee, Gi Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.120-120
    • /
    • 2020
  • Spatial precipitation data is one of the essential components in modeling hydrological problems. The estimation of these data has achieved significant achievements own to the recent advances in remote sensing technology. However, there are still gaps between the satellite-derived rainfall data and observed data due to the significant dependence of rainfall on spatial and temporal characteristics. An effective approach based on the Convolutional Neural Network (CNN) model to correct the satellite-derived rainfall data is proposed in this study. The Mekong River basin, one of the largest river system in the world, was selected as a case study. The two gridded precipitation data sets with a spatial resolution of 0.25 degrees used in the CNN model are APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks). In particular, PERSIANN-CDR data is exploited as satellite-based precipitation data and APHRODITE data is considered as observed rainfall data. In addition to developing a CNN model to correct the satellite-based rain data, another statistical method based on standard deviations for precipitation bias correction was also mentioned in this study. Estimated results indicate that the CNN model illustrates better performance both in spatial and temporal correlation when compared to the standard deviation method. The finding of this study indicated that the CNN model could produce reliable estimates for the gridded precipitation bias correction problem.

  • PDF

Fault Diagnosis Management Model using Machine Learning

  • Yang, Xitong;Lee, Jaeseung;Jung, Heokyung
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.2
    • /
    • pp.128-134
    • /
    • 2019
  • Based on the concept of Industry 4.0, various sensors are attached to facilities and equipment to collect data in real time and diagnose faults using analyzing techniques. Diagnostic technology continuously monitors faults or performance degradation of facilities and equipment in operation and diagnoses abnormal symptoms to ensure safety and availability through maintenance before failure occurs. In this paper, we propose a model to analyze the data and diagnose the state or failure using machine learning. The diagnosis model is based on a support vector machine (SVM)-based diagnosis model and a self-learning one-class SVM-based diagnostic model. In the future, it is expected that this model can be applied to facilities used in the entire industry by applying the actual data to the diagnostic model proposed in this paper, conducting the experiment, and verifying it through the model performance evaluation index.

Artificial Neural Networks for Interest Rate Forecasting based on Structural Change : A Comparative Analysis of Data Mining Classifiers

  • Oh, Kyong-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.641-651
    • /
    • 2003
  • This study suggests the hybrid models for interest rate forecasting using structural changes (or change points). The basic concept of this proposed model is to obtain significant intervals caused by change points, to identify them as the change-point groups, and to reflect them in interest rate forecasting. The model is composed of three phases. The first phase is to detect successive structural changes in the U. S. Treasury bill rate dataset. The second phase is to forecast the change-point groups with data mining classifiers. The final phase is to forecast interest rates with backpropagation neural networks (BPN). Based on this structure, we propose three hybrid models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported model, (2) case-based reasoning (CBR)-supported model, and (3) BPN-supported model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. For interest rate forecasting, this study then examines the prediction ability of hybrid models to reflect the structural change.

  • PDF

Testing the domestic financial data for the normality of the innovation based on the GARCH(1,1) model

  • Lee, Tae-Wook;Ha, Jeong-Cheol
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.809-815
    • /
    • 2007
  • Since Bollerslev(1986), the GARCH model has been popular in analysing the volatility of the financial time series. In real data analysis, practitioners conventionally put the normal assumption on the innovation random variables of the GARCH model, which is often violated. In this paper, we analyse the domestic financial data based on the GARCH(1,1) model and among existing normality tests, perform the Jarque-Bera test based on the residuals. It is shown that the innovation based on the GARCH(1,1) model dose not follow the normality assumption.

  • PDF