• Title/Summary/Keyword: data partition evaluation

Search Result 29, Processing Time 0.02 seconds

Strengthening Evaluation of Post-Tensioning Due to Anchorage System (정착방법에 따른 외부 프리스트레이트 도입공법의 보강성능 평가)

  • 박승범;홍석주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.279-284
    • /
    • 2000
  • The bridge is nation's principal structure and its influence for national economy is enormous. But it is essential for maintenance of deteriorated bridge because of the increased service life and the decreased performance. For the bridge reinforced by continuos slabs and post-tensioning, we evaluate th stress properties of girders and internal support. Results are almost coincidence between measured data in the field and analysed data by computer. We compared the effects by successive order of post- tensioning and order considered distribution of each girder's camber and stress. Bridge's camber and stress showed respectively symmetry and asymmetry shape by post tensioning order. For the effect of post-tensioning force partition, we divided the post-tensioning force into 3 types (100%, 20%, 30%), and the results show t도 difference of final stress and camber.

  • PDF

A Novel Reconfigurable Processor Using Dynamically Partitioned SIMD for Multimedia Applications

  • Lyuh, Chun-Gi;Suk, Jung-Hee;Chun, Ik-Jae;Roh, Tae-Moon
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.709-716
    • /
    • 2009
  • In this paper, we propose a novel reconfigurable processor using dynamically partitioned single-instruction multiple-data (DP-SIMD) which is able to process multimedia data. The SIMD processor and parallel SIMD (P-SIMD) processor, which is composed of a number of SIMD processors, are usually used these days. But these processors are inefficient because all processing units (PUs) should process the same operations all the time. Moreover, the PUs can process different operations only when every SIMD group operation is predefined. We propose a processor control method which can partition parallel processors into multiple SIMD-based processors dynamically to enhance efficiency. For performance evaluation of the proposed method, we carried out the inverse transform, inverse quantization, and motion compensation operations of H.264 using processors based on SIMD, P-SIMD, and DP-SIMD. Experimental results show that the DP-SIMD control method is more efficient than SIMD and P-SIMD control methods by about 15% and 14%, respectively.

Multi-mode Radar Signal Sorting by Means of Spatial Data Mining

  • Wan, Jian;Nan, Pulong;Guo, Qiang;Wang, Qiangbo
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.725-734
    • /
    • 2016
  • For multi-mode radar signals in complex electromagnetic environment, different modes of one emitter tend to be deinterleaved into several emitters, called as "extension", when processing received signals by use of existing sorting methods. The "extension" problem inevitably deteriorates the sorting performance of multi-mode radar signals. In this paper, a novel method based on spatial data mining is presented to address above challenge. Based on theories of data field, we describe the distribution information of feature parameters using potential field, and makes partition clustering of parameter samples according to revealed distribution features. Additionally, an evaluation criterion based on cloud model membership is established to measure the relevance between different cluster-classes, which provides important spatial knowledge for the solution of the "extension" problem. It is shown through numerical simulations that the proposed method is effective on solving the "extension" problem in multi-mode radar signal sorting, and can achieve higher correct sorting rate.

Single-step genomic evaluation for growth traits in a Mexican Braunvieh cattle population

  • Jonathan Emanuel Valerio-Hernandez;Agustin Ruiz-Flores;Mohammad Ali Nilforooshan;Paulino Perez-Rodriguez
    • Animal Bioscience
    • /
    • v.36 no.7
    • /
    • pp.1003-1009
    • /
    • 2023
  • Objective: The objective was to compare (pedigree-based) best linear unbiased prediction (BLUP), genomic BLUP (GBLUP), and single-step GBLUP (ssGBLUP) methods for genomic evaluation of growth traits in a Mexican Braunvieh cattle population. Methods: Birth (BW), weaning (WW), and yearling weight (YW) data of a Mexican Braunvieh cattle population were analyzed with BLUP, GBLUP, and ssGBLUP methods. These methods are differentiated by the additive genetic relationship matrix included in the model and the animals under evaluation. The predictive ability of the model was evaluated using random partitions of the data in training and testing sets, consistently predicting about 20% of genotyped animals on all occasions. For each partition, the Pearson correlation coefficient between adjusted phenotypes for fixed effects and non-genetic random effects and the estimated breeding values (EBV) were computed. Results: The random contemporary group (CG) effect explained about 50%, 45%, and 35% of the phenotypic variance in BW, WW, and YW, respectively. For the three methods, the CG effect explained the highest proportion of the phenotypic variances (except for YW-GBLUP). The heritability estimate obtained with GBLUP was the lowest for BW, while the highest heritability was obtained with BLUP. For WW, the highest heritability estimate was obtained with BLUP, the estimates obtained with GBLUP and ssGBLUP were similar. For YW, the heritability estimates obtained with GBLUP and BLUP were similar, and the lowest heritability was obtained with ssGBLUP. Pearson correlation coefficients between adjusted phenotypes for non-genetic effects and EBVs were the highest for BLUP, followed by ssBLUP and GBLUP. Conclusion: The successful implementation of genetic evaluations that include genotyped and non-genotyped animals in our study indicate a promising method for use in genetic improvement programs of Braunvieh cattle. Our findings showed that simultaneous evaluation of genotyped and non-genotyped animals improved prediction accuracy for growth traits even with a limited number of genotyped animals.

A Study on The Performance Analysis of Partition Multistage Interconnection Network (분할된 다단상호접속망의 성능 분석에 관한 연구)

  • 김영선;최진규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.6
    • /
    • pp.675-685
    • /
    • 1989
  • The interconnection network is an integral part of parallel processing system. The multistage interconnection networks(MINs) have been the objects of intense research in recent years. In this paper, simulation techniques for circuit switchign MIN are extended to allow the performance evaluation of partitioned ADM/IADM network. Based on simulation data, the relationship between the netwrok performance, the partitioning scheme employed, and the conflict resolution strategies used within the network is enumerated. It is shown that IADM network coupled with the use of the hold strategy produces the best network operation in terms of RST (Request Service Time).

  • PDF

A Study of Decision Tree Modeling for Predicting the Prosody of Corpus-based Korean Text-To-Speech Synthesis (한국어 음성합성기의 운율 예측을 위한 의사결정트리 모델에 관한 연구)

  • Kang, Sun-Mee;Kwon, Oh-Il
    • Speech Sciences
    • /
    • v.14 no.2
    • /
    • pp.91-103
    • /
    • 2007
  • The purpose of this paper is to develop a model enabling to predict the prosody of Korean text-to-speech synthesis using the CART and SKES algorithms. CART prefers a prediction variable in many instances. Therefore, a partition method by F-Test was applied to CART which had reduced the number of instances by grouping phonemes. Furthermore, the quality of the text-to-speech synthesis was evaluated after applying the SKES algorithm to the same data size. For the evaluation, MOS tests were performed on 30 men and women in their twenties. Results showed that the synthesized speech was improved in a more clear and natural manner by applying the SKES algorithm.

  • PDF

Fuzzy discretization with spatial distribution of data and Its application to feature selection (데이터의 공간적 분포를 고려한 퍼지 이산화와 특징선택에의 응용)

  • Son, Chang-Sik;Shin, A-Mi;Lee, In-Hee;Park, Hee-Joon;Park, Hyoung-Seob;Kim, Yoon-Nyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.165-172
    • /
    • 2010
  • In clinical data minig, choosing the optimal subset of features is such important, not only to reduce the computational complexity but also to improve the usefulness of the model constructed from the given data. Moreover the threshold values (i.e., cut-off points) of selected features are used in a clinical decision criteria of experts for differential diagnosis of diseases. In this paper, we propose a fuzzy discretization approach, which is evaluated by measuring the degree of separation of redundant attribute values in overlapping region, based on spatial distribution of data with continuous attributes. The weighted average of the redundant attribute values is then used to determine the threshold value for each feature and rough set theory is utilized to select a subset of relevant features from the overall features. To verify the validity of the proposed method, we compared experimental results, which applied to classification problem using 668 patients with a chief complaint of dyspnea, based on three discretization methods (i.e., equal-width, equal-frequency, and entropy-based) and proposed discretization method. From the experimental results, we confirm that the discretization methods with fuzzy partition give better results in two evaluation measures, average classification accuracy and G-mean, than those with hard partition.

A Dynamic Partitioning Scheme for Distributed Storage of Large-Scale RDF Data (대규모 RDF 데이터의 분산 저장을 위한 동적 분할 기법)

  • Kim, Cheon Jung;Kim, Ki Yeon;Yoo, Jong Hyeon;Lim, Jong Tae;Bok, Kyoung Soo;Yoo, Jae Soo
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1126-1135
    • /
    • 2014
  • In recent years, RDF partitioning schemes have been studied for the effective distributed storage and management of large-scale RDF data. In this paper, we propose an RDF dynamic partitioning scheme to support load balancing in dynamic environments where the RDF data is continuously inserted and updated. The proposed scheme creates clusters and sub-clusters according to the frequency of the RDF data used by queries to set graph partitioning criteria. We partition the created clusters and sub-clusters by considering the workloads and data sizes for the servers. Therefore, we resolve the data concentration of a specific server, resulting from the continuous insertion and update of the RDF data, in such a way that the load is distributed among servers in dynamic environments. It is shown through performance evaluation that the proposed scheme significantly improves the query processing time over the existing scheme.

High-Dimensional Image Indexing based on Adaptive Partitioning ana Vector Approximation (적응 분할과 벡터 근사에 기반한 고차원 이미지 색인 기법)

  • Cha, Gwang-Ho;Jeong, Jin-Wan
    • Journal of KIISE:Databases
    • /
    • v.29 no.2
    • /
    • pp.128-137
    • /
    • 2002
  • In this paper, we propose the LPC+-file for efficient indexing of high-dimensional image data. With the proliferation of multimedia data, there Is an increasing need to support the indexing and retrieval of high-dimensional image data. Recently, the LPC-file (5) that based on vector approximation has been developed for indexing high-dimensional data. The LPC-file gives good performance especially when the dataset is uniformly distributed. However, compared with for the uniformly distributed dataset, its performance degrades when the dataset is clustered. We improve the performance of the LPC-file for the strongly clustered image dataset. The basic idea is to adaptively partition the data space to find subspaces with high-density clusters and to assign more bits to them than others to increase the discriminatory power of the approximation of vectors. The total number of bits used to represent vector approximations is rather less than that of the LPC-file since the partitioned cells in the LPC+-file share the bits. An empirical evaluation shows that the LPC+-file results in significant performance improvements for real image data sets which are strongly clustered.

Spatial Partitioning using filbert Space Filling Curve for Spatial Query Optimization (공간 질의 최적화를 위한 힐버트 공간 순서화에 따른 공간 분할)

  • Whang, Whan-Kyu;Kim, Hyun-Guk
    • The KIPS Transactions:PartD
    • /
    • v.11D no.1
    • /
    • pp.23-30
    • /
    • 2004
  • In order to approximate the spatial query result size we partition the input rectangles into subsets and estimate the query result size based on the partitioned spatial area. In this paper we examine query result size estimation in skewed data. We examine the existing spatial partitioning techniques such as equi-area and equi-count partitioning, which are analogous to the equi-width and equi-height histograms used in relational databases, and examine the other partitioning techniques based on spatial indexing. In this paper we propose a new spatial partitioning technique based on the Hilbert space filling curve. We present a detailed experimental evaluation comparing the proposed technique and the existing techniques using synthetic as well as real-life datasets. The experiments showed that the proposed partitioning technique based on the Hilbert space filling curve achieves better query result size estimation than the existing techniques for space query size, bucket numbers, skewed data, and spatial data size.