Clinical prediction models has been increasingly published in radiology research. In particular, as a radiomics research is being actively conducted, the prediction model is developed based on the traditional statistical model, as well as machine learning, to account for the high-dimensional data. In this review, we investigated the statistical and machine learning methods used in clinical prediction model research, and briefly summarized each analytical method for statistical model, machine learning, and statistical learning. Finally, we discussed several considerations for choosing the prediction modeling method.
Jungmin KIM;Soo-Kyoung LEE;Rihyun SHIN;Jin-Woo PARK
Journal of Distribution Science
/
v.22
no.4
/
pp.79-89
/
2024
Purpose: This study aims to enhance airport service quality by examining their impact on brand image, advocacy, and mediating brand trust in the aviation service distribution sector. Research Design, Data, and Methodology: Using existing literature, we propose a structural model exploring the relationships between key components which are service quality, brand trust, brand Image and brand advocacy. An online survey, based on prior literature, was administered to 287 Koreans who have experienced using facilities or services at Incheon International Airport (IIA). Statistical analysis employed confirmatory factor analysis (CFA) and structural equation modelling (SEM). Results: Research findings show significant impacts of airport service quality on brand trust. Increased brand trust positively influences airport brand image and advocacy. Conclusion: The study emphasizes the aviation industry's potential to boost brand trust through improved airport service quality via users' interactions. Service quality is critical factors in building brand trust. The findings emphasize the critical role of service quality in fostering brand trust. It underscores the importance of user's satisfaction with service quality in fostering brand trust which can lead to brand image and brand advocacy. The aviation industry should formulate policies and strategies to enhance brand trust improved service quality, thereby improving brand image and brand advocacy.
This study presents a mode analysis of 3D turbulent velocity data around a square-section building model to identify the dynamic system for Kármán-type vortex shedding. Proper orthogonal decomposition (POD) was first performed to extract the significant 3D modes. Magnitude-squared coherence was then applied to detect the phase consistency between the modes, which were roughly divided into three groups. Group 1 (modes 1-4) depicted the main vortex shedding on the wake of the building, with mode 2 being controlled by the inflow fluctuation. Group 2 exhibited complex wake vortexes and single-sided vortex phenomena, while Group 3 exhibited more complicated phenomena, including flow separation. Subsequently, a third-order polynomial regression model was used to fit the dynamics system of modes 1, 3, and 4, which revealed average trend of the state trajectory. The two limit cycles of the regression model depicted the two rotation directions of Kármán-type vortex. Furthermore, two characteristic periods were identified from the trajectory generated by the regression model, which indicates fast and slow motions of the wake vortex. This study provides valuable insights into 3D mode morphology and dynamics of Kármán-type vortex shedding that helps to improve design and efficiency of structures in turbulent flow.
Liquid-spray cleaning has recently been considered an eco-friendly cleaning method in the semiconductor industry because it efficiently cleans contaminated wafers without using any chemicals, relying instead on direct momentum transfer through dropwise impaction. Previous researches are mainly divided into two groups, such as modelling studies predicting the cleaning effect of single-droplet impact and experimental works for measuring particle removal efficiency (PRE) that essentially accompanies multiple droplet impacts. Here, we developed a Monte Carlo model to connect the single-droplet based model to the ensemble effect of multiple droplet impacts in real cleaning experiments, and thereby predict the PREs from the impaction conditions of droplets and the diameters of target particles. Additionally, we developed a two-fluid supersonic nozzle system, capable of spraying 10-60 ㎛ droplets under control of impact velocity, with aims to validate the model predictions of PREs for 15-130 nm contaminant particles on a Si wafer. We confirmed that the model predictions are in agreement with the experimental data within 7% and the cleaning time needs to be controlled for ensuring the efficient removal of particles.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.28
no.3
/
pp.108-119
/
2024
The Reynolds-averaged Navier-Stokes (RANS) simulations are commonly used in industrial applications due to their computational efficiency. However, the linear eddy viscosity model (LEVM) used in RANS often fails to accurately capture the anisotropy of Reynolds stress in complex flow conditions. To enhance RANS predictive accuracy, data-driven closure models, such as Tensor Basis Neural Network (TBNN) and Tensor Basis Random Forest (TBRF), have been proposed. However existing models, including TBNN and TBRF, have limitations in capturing the nonlocal patterns of turbulence models, resulting in irregular and unsmooth predictions. Convolutional neural networks (CNNs) are considered as an alternative approach, but their reliance on discretization poses challenges when dealing with arbitrarily designed meshes in RANS simulations. In this study, we propose a nonlinear convolutional neural operator as the RANS closure model. Our model satisfies Galilean invariance, can learn nonlocal physics, and recovers high-resolution physics even when trained on undersampled grids. The model outperforms existing TBNN and TBRF models, successfully predicting smooth fields of Reynolds stress in flows with adverse pressure gradients, separations, and streamline curvature, where existing models struggle or fail to provide accurate predictions.
Journal of the Korean association of regional geographers
/
v.23
no.2
/
pp.376-387
/
2017
This paper attempts to analyze the geographical characters of Twitter data and presents analysis potentials for social network analysis in geography. First, this paper suggests a methodology for a topic modeling-based approach in order to identify the geographical characteristics of tweets, including an analysis flow of Twitter data sets, tweet data collection and conversion, textural pre-processing and structural analysis, topic discovery, and interpretation of tweets' topics. GPS coordinates referencing tweets(geotweets) were extracted among sampled Twitter data sets because it contains the tweet place where it was created. This paper identifies a correlated relationship between some specific topics and local places in Jeju. This correlation is closely associated with some place names and local sites in Jeju Island. We assume it is the intention of tweeters to record their tweet places and to share and retweet with other tweeters in some cases. A surface density map shows the hotspots of tweets, detecting around some specific places and sites such as Jeju airport, sightseeing sites, and local places in Jeju Island. The hotspots show similar patterns of the floating population of Jeju, especially the thirty-year age group. In addition, a topic modeling algorithm is applied for the geographical topic discovery and comparison of the spatial patterns of tweets. Finally, this empirical analysis presents that Twitter data, as social network data, provide geographical significance, with topic modeling approach being useful in analyzing the textural features reflecting the geographical characteristics in large data sets of tweets.
In field surveys using the dipole-dipole electrical resistivity method, we often encounter negative apparent resistivity. The term 'negative apparent resistivity' refers to apparent resistivity values with the opposite sign to surrounding data in a pseudosection. Because these negative apparent resistivity values have been regarded as measurement errors, we have discarded the negative apparent resistivity data. Some people have even used negative apparent resistivity data in an inversion process, by taking absolute values of the data. Our field experiments lead us to believe that the main cause for negative apparent resistivity is neither measurement errors nor the influence of self potentials. Furthermore, we also believe that it is not caused by the effects of induced polarization. One possible cause for negative apparent resistivity is the subsurface geological structure. In this study, we provide some numerical examples showing that negative apparent resistivity can arise from geological structures. In numerical examples, we simulate field data using a 3D numerical modelling algorithm, and then extract 2D sections. Our numerical experiments demonstrate that the negative apparent resistivity can be caused by geological structures modelled by U-shaped and crescent-shaped conductive models. Negative apparent resistivity usually occurs when potentials increase with distance from the current electrodes. By plotting the voltage-electrode position curves, we could confirm that when the voltage curves intersect each other, negative apparent resistivity appears. These numerical examples suggest that when we observe negative apparent resistivity in field surveys, we should consider the possibility that the negative apparent resistivity has been caused by geological structure.
The selection rate of tree burials (TB) is still low in spite of increasing concerns about TB and government's efforts to increase TB participation. It is necessary to understand the factors affecting TB selection. This study investigated the relationship between major variables (attitude: ATT; subjective norm: SN; perceived behavioral control: PBC) of Ajzen's theory of planned behavior (TPB), additional variable (custom: CUST), and intention to select TB by using structural equation modelling (SEM). Samples were selected from Gwang-ju citizens using proportionate stratified sampling (PST) by region during September of 2011. Four hundred and twelve responses were used for data analysis. The model showed fair goodness of fit. All four variables (ATT, SN, PBC, CUST) influenced intention to select TB. The four variables explained 53.0% of intention to select TB. SN(${\beta}$=0.459) was the most predictive variable on the intention, followed by ATT(${\beta}$=0.247), PBC(${\beta}$=0.152), and CUST(${\beta}$=0.102) in decreasing order. The results were discussed and some suggestions to increase the intention of tree burial selection were made.
Purpose - The online-to-offline (O2O) business model has brought considerable changes to the traditional Chinese business model. The main difference between O2O and pure online consumption is that O2O offers a richer experience and word-of-mouth. it is easier to trigger online word-of-mouth. However, few scholars have been concerned about the impact of experiential value on customer satisfaction and online word-of-mouth (e-WOM) in the study of O2O. This study takes the O2O business model in China's catering industry as its research object and uses structural equation modelling to analyze the impact of online and offline experiential values on customer satisfaction and e-WOM. Research design, data, and methodology - According to previous researches, consumer experiential value is mainly divided into return on investment (economy and efficiency), service excellence, playfulness and aesthetics. According to the characteristics of O2O in China's catering industry, this study divides the online experience value into efficiency and economy (return on investment). The offline part is divided into return on investment (economy and efficiency), service excellence, playfulness and aesthetics. Using a web-based survey, we collected 303 valid samples. Structural equation modelling was used to create the research model. Results - The results show that efficiency (online) and service excellence (offline) have a significant effect on customer satisfaction. Economics (online) and playfulness (offline) have a positive impact on customers' e-WOM. In addition, the higher the customer satisfaction, the greater the positive impact on the spread by word of mouth. However, aesthetic(offline) and return on investment(offline) have no significant impact to customer satisfaction and e-WOM. Conclusions - The study findings show that the key to boost customer satisfaction in the catering industry is to improve product quality and service. Although traditional competitive strategies such as online discount have been questioned by many scholars about their decreasing effectiveness, they are indispensable means to attract online traffic and trigger e-WOM. The traditional enterprises can reconstruct traditional business processes through the O2O model to effectively improve customer satisfaction and word of mouth by improving the experiential value of economy and efficiency. Additionally, it can be used as the natural advantages of online communication to induce customers to engage in word of mouth and attract more potential customers.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.22
no.1
/
pp.29-36
/
2004
This study describes the development of coordinate transformation tool for transforming the digital map using newly derived transformation parameters which are determined from the data referred to the local geodetic datum and the geocentric datum (ITRF2000) and the distortion modelling derived from collocation method. We prepared 190 common points and used 107 points to calculate 7 transformation parameters. In order to evaluate an accuracy of coordinate transformation, 83 common points were tested. In this study, we used Molodensky-Badekas model to derive the 7 transformation Parameters. An accuracy of 0.22m was obtained applying 7 Parameters transformation and the distortion modelling together. It shows that the accuracy of coordinate transformation is improved 72% against the result of 7 parameters transformation only. We developed the transformation tool, GDKtrans, which can be transformed the digital map of scales 1/50,000, 1/25,000 and 1/5,000. We also analyzed the digital map of l/5,000 at six urban areas by GPS observations. The result shows less RMSE of about 1.9 m and large disagreement at position and features. Consequently, we suggests that l/5,000 digital map is necessary of whole revision.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.