• Title/Summary/Keyword: data modelling

Search Result 1,282, Processing Time 0.031 seconds

Improvements in the Simulation of Sea Surface Wind Over the Complex Coastal Area-II: Data Assimilation Using LAPS (복잡 해안지역 해상풍 모의의 정확도 개선-II: LAPS를 사용한 자료동화)

  • Bae, Joo-Hyun;Kim, Yoo-Keun;Jeong, Ju-Hee;Kweon, Ji-Hye;Seo, Jang-Won;Kim, Yong-Sang
    • Journal of Environmental Science International
    • /
    • v.15 no.8
    • /
    • pp.745-757
    • /
    • 2006
  • We focus on the improvement of accuracy of sea surface wind over complex coastal area doling the warm season. Local Analysis Prediction System (LAPS) was used to improve the initial values in Mesoscale Meteorological model (MM5). During the clear summer days with weak wind speed, sea surface wind simulated with LAPS was compared with the case without LAPS. The results of modeling with LAPS has a good agreement mesoscale circulation such as mountain and valley winds on land and in case of modeling without LAPS, wind speed overestimated over the sea in the daytime. And the results of simulation with LAPS indicated similar wind speed values to observational data over the sea under influence of data assimilation using BUOY, QuikSCAT, and AMEBAS. The present study suggests that MM5 modelling with LAPS showed more improved results than that of without LAPS to simulate sea surface wind over the complex coastal area.

Particulate Matter Prediction using Multi-Layer Perceptron Network (다층 퍼셉트론 신경망을 이용한 미세먼지 예측)

  • Cho, Kyoung-woo;Jung, Yong-jin;Kang, Chul-gyu;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.620-622
    • /
    • 2018
  • The need for particulate matter prediction algorithms has increased as social interest in the effects of human on particulate matter increased. Many studies have proposed statistical modelling and machine learning techniques based prediction models using weather data, but it is difficult to accurately set the environment and detailed conditions of the models. In addition, there is a need to design a new prediction model for missing data in domestic weather monitoring station. In this paper, fine dust prediction is performed using multi-layer perceptron network as a previous study for particulate matter prediction. For this purpose, a prediction model is designed based on weather data of three monitoring station and the suitability of the algorithm for particulate matter prediction is evaluated through comparison with actual data.

  • PDF

The Energy Performance & Economy Efficiency Evaluation of Microturbine Installed in Hospital buildings (대형병원에서 마이크로터빈 이용한 열병합시스템 에너지성능 및 경제성 분석)

  • Kim, Byung-Soo;Gil, Young-Wok;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.176-183
    • /
    • 2009
  • Distributed generation(DG) of combined cooling, heat, and power(CCHP)has been gaining momentum in recent year as efficient, secure alternative for meeting increasing energy demands. This paper presents the energy performance of microturbine CCHP system equipped with an absorption chiller by modelling it in hospital building. The orders of study were as following. 1)The list and schedule of energy consumption equipment in hospital were examined such as heating and cooling machine, light etc. 2) Annual report of energy usage and monitoring data were examined as heating, cooling, DHW, lighting, etc. 3) The weather data in 2007 was used for simulation and was arranged by meteorological office data in Daejeon. 4) Reference simulation model was built by comparison of real energy consumption and simulation result by TRNSYS and ESP-r. The energy consumption pattern of building were analyzed by simulation model and energy reduction rate were calculated over the cogeneration. As a result of this study, power generation efficiency of turbine was about 30[%] after installing micro gas turbine and lighting energy as well as total electricity consumption can be reduced by 40[%]. If electricity energy and waste heat in turbine are used, 56[%] of heating energy and 67[%] of cooling energy can be reduced respectively, and total system efficiency can be increased up to 70[%].

Towards the development of an accurate DEM generation system from KOMPSAT-1 Electro-Optical Camera Data (다목적 실용위성 1호기 EOC카메라 영상으로부터 DEM 추출을 위한 시스템개발에 관한 고찰)

  • Taejung Kim;Heung Kyu Lee
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.232-249
    • /
    • 1998
  • The first Korean remote sensing satellite, Korea Multi-Purpose Satellite (KOMPSAT-1), is going to be launched in 1999. This will carry a 7m resolution Electro-Optical Camera (EOC) for earth observation. The primary mission of the KOMPSAT-1 is to acquire stereo imagery over the Korean peninsular for the generation of 1:25,000 scale cartographic maps. For this mission, research is being carried out to assess the possibilities of automated or semi-automated mapping of EOC data and to develop, if necessary, such enabling tools. This paper discusses the issue of automated digital elevation model (DEM) generation from EOC data and identifies some important aspects in developing a DEM generation system from EOC data. This paper also presents the current status of the development work for such a system. The development work will be described in three pares of sensor modelling, stereo matching and DEM interpolation. The performance of the system is shown with a SPOT stereo pair. A DEM generated from commercial software is also presented for comparison. The proposed system seems to generate promising results.

Application of a Statistical Interpolation Method to Correct Extreme Values in High-Resolution Gridded Climate Variables (고해상도 격자 기후자료 내 이상 기후변수 수정을 위한 통계적 보간법 적용)

  • Jeong, Yeo min;Eum, Hyung-Il
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.331-344
    • /
    • 2015
  • A long-term gridded historical data at 3 km spatial resolution has been generated for practical regional applications such as hydrologic modelling. However, overly high or low values have been found at some grid points where complex topography or sparse observational network exist. In this study, the Inverse Distance Weighting (IDW) method was applied to properly smooth the overly predicted values of Improved GIS-based Regression Model (IGISRM), called the IDW-IGISRM grid data, at the same resolution for daily precipitation, maximum temperature and minimum temperature from 2001 to 2010 over South Korea. We tested various effective distances in the IDW method to detect an optimal distance that provides the highest performance. IDW-IGISRM was compared with IGISRM to evaluate the effectiveness of IDW-IGISRM with regard to spatial patterns, and quantitative performance metrics over 243 AWS observational points and four selected stations showing the largest biases. Regarding the spatial pattern, IDW-IGISRM reduced irrational overly predicted values, i. e. producing smoother spatial maps that IGISRM for all variables. In addition, all quantitative performance metrics were improved by IDW-IGISRM; correlation coefficient (CC), Index Of Agreement (IOA) increase up to 11.2% and 2.0%, respectively. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were also reduced up to 5.4% and 15.2% respectively. At the selected four stations, this study demonstrated that the improvement was more considerable. These results indicate that IDW-IGISRM can improve the predictive performance of IGISRM, consequently providing more reliable high-resolution gridded data for assessment, adaptation, and vulnerability studies of climate change impacts.

An analysis of the change in media's reports and attitudes about face masks during the COVID-19 pandemic in South Korea: a study using Big Data latent dirichlet allocation (LDA) topic modelling (빅데이터 LDA 토픽 모델링을 활용한 국내 코로나19 대유행 기간 마스크 관련 언론 보도 및 태도 변화 분석)

  • Suh, Ye-Ryoung;Koh, Keumseok Peter;Lee, Jaewoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.731-740
    • /
    • 2021
  • This study applied LDA topic modeling analysis to collect and analyze news media big data related to face masks in the three waves of the COVID-19 pandemic in Korea. The results empirically show that media reports focused on mask production and distribution policies in the first wave and the mandatory mask wearing in the second wave. In contrast, more reports on trivial, gossipy events consist of the media coverage in the second and third waves. The findings imply that Korea's governmental interventions to address the shortage of face masks and to regulate mask wearing were successful relatively in a short time. In contrast, the study also reports that there may be relative less number of science-based news reports like the ones on the effectiveness of face masks or different levels of filter types. This study exemplifies how a big data analysis can be applied to evaluate and enhance public health communication.

Global Ocean Data Assimilation and Prediction System 2 in KMA: Operational System and Improvements (기상청 전지구 해양자료동화시스템 2(GODAPS2): 운영체계 및 개선사항)

  • Hyeong-Sik Park;Johan Lee;Sang-Min Lee;Seung-On Hwang;Kyung-On Boo
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.423-440
    • /
    • 2023
  • The updated version of Global Ocean Data Assimilation and Prediction System (GODAPS) in the NIMS/KMA (National Institute of Meteorological Sciences/Korea Meteorological Administration), which has been in operation since December 2021, is being introduced. This technical note on GODAPS2 describes main progress and updates to the previous version of GODAPS, a software tool for the operating system, and its improvements. GODAPS2 is based on Forecasting Ocean Assimilation Model (FOAM) vn14.1, instead of previous version, FOAM vn13. The southern limit of the model domain has been extended from 77°S to 85°S, allowing the modelling of the circulation under ice shelves in Antarctica. The adoption of non-linear free surface and variable volume layers, the update of vertical mixing parameterization, and the adjustment of isopycnal diffusion coefficient for the ocean model decrease the model biases. For the sea-ice model, four vertical ice layers and an additional snow layer on top of the ice layers are being used instead of previous single ice and snow layers. The changes for data assimilation include the updated treatment for background error covariance, a newly added bias scheme combined with observation bias, the application of a new bias correction for sea level anomaly, an extension of the assimilation window from 1 day to 2 days, and separate assimilations for ocean and sea-ice. For comparison, we present the difference between GODAPS and GODAPS2. The verification results show that GODAPS2 yields an overall improved simulation compared to GODAPS.

Refinement of Interpretation Method for Reliable Vs Profiling in Downhole Seismic Method (다운홀 시험에서 신뢰성 있는 전단파 속도 주상도 도출을 위한 해석 기법의 개선)

  • Bang, Eun-Seok;Kim, Dong-Soo;Yoon, Jong-Ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.157-170
    • /
    • 2006
  • Downhole method is considered as giving a little unreliable Vs profile when the signal to noise ratio(S/N) is low and the travel time information is erroneous although it is economical and ease of operation. Direct method has been applied for obtaining adequate result in this case. But it is difficult to determine optimum result by using direct method which is subjective and considering straight ray path. Therefore, in this paper, Mean Refracted Ray Path Method(MRM) was proposed, which is automated and considering refracted ray path. Artificial travel time data adding some travel time error was generated by forward modeling based on Snell's Law and travel time data was also obtained from numerical signal traces using FEM modelling. Using these travel time data, reliability of MRM was verified in the manner of comparing the results determined by MRM with the model. Finally, proposed method was applied to the real field data and it was considered as improved method for obtaining the optimum result in downhole seismic method.

A Comparison of Accuracy of the Ocean Thermal Environments Using the Daily Analysis Data of the KMA NEMO/NEMOVAR and the US Navy HYCOM/NCODA (기상청 전지구 해양순환예측시스템(NEMO/NEMOVAR)과 미해군 해양자료 동화시스템(HYCOM/NCODA)의 해양 일분석장 열적환경 정확도 비교)

  • Ko, Eun Byeol;Moon, Il-Ju;Jeong, Yeong Yun;Chang, Pil-Hun
    • Atmosphere
    • /
    • v.28 no.1
    • /
    • pp.99-112
    • /
    • 2018
  • In this study, the accuracy of ocean analysis data, which are produced from the Korea Meteorological Administration (KMA) Nucleus for European Modelling of the Ocean/Variational Data Assimilation (NEMO/NEMOVAR, hereafter NEMO) system and the HYbrid Coordinate Ocean Model/Navy Coupled Ocean Data Assimilation (HYCOM/NCODA, hereafter HYCOM) system, was evaluated using various oceanic observation data from March 2015 to February 2016. The evaluation was made for oceanic thermal environments in the tropical Pacific, the western North Pacific, and the Korean peninsula. NEMO generally outperformed HYCOM in the three regions. Particularly, in the tropical Pacific, the RMSEs (Root Mean Square Errors) of NEMO for both the sea surface temperature and vertical water temperature profile were about 50% smaller than those of HYCOM. In the western North Pacific, in which the observational data were not used for data assimilation, the RMSE of NEMO profiles up to 1000 m ($0.49^{\circ}C$) was much lower than that of HYCOM ($0.73^{\circ}C$). Around the Korean peninsula, the difference in RMSE between the two models was small (NEMO, $0.61^{\circ}C$; HYCOM, $0.72^{\circ}C$), in which their errors show relatively big in the winter and small in the summer. The differences reported here in the accuracy between NEMO and HYCOM for the thermal environments may be attributed to horizontal and vertical resolutions of the models, vertical coordinate and mixing scheme, data quality control system, data used for data assimilation, and atmosphere forcing. The present results can be used as a basic data to evaluate the accuracy of NEMO, before it becomes the operational model of the KMA providing real-time ocean analysis and prediction data.

Using Requirements Engineering to support Non-Functional Requirements Elicitation for DAQ System

  • Kim, Kyung-Sik;Lee, Seok-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.99-109
    • /
    • 2021
  • In recent machine learning studies, in order to consider the quality and completeness of data, derivation of non-functional requirements for data has been proposed from the viewpoint of requirements engineering. In particular, requirements engineers have defined data requirements in machine learning. In this study, data requirements were derived at the data acquisition (DAQ) stage, where data is collected and stored before data preprocessing. Through this, it is possible to express the requirements of all data required in the existing DAQ system, the presence of tasks (functions) satisfying them, and the relationship between the requirements and functions. In addition, it is possible to elicit requirements and to define the relationship, so that a software design document can be produced, and a systematic approach and direction can be established in terms of software design and maintenance. This research using existing DAQ system cases, scenarios and use cases for requirements engineering approach are created, and data requirements for each case are extracted based on them, and the relationship between requirements, functions, and goals is illustrated through goal modeling. Through the research results, it was possible to extract the non-functional requirements of the system, especially the data requirements, from the DAQ system using requirements engineering.