• Title/Summary/Keyword: data modelling

Search Result 1,293, Processing Time 0.029 seconds

Preliminary Investigation for Feasibility of Wave Energy Converters and the Surrounding Sea as Test-site for Marine Equipment

  • Park, Jin-Yeong;Baek, Hyuk;Shim, Hyungwon;Choi, Jong-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.351-360
    • /
    • 2020
  • Of late, demand for test sites for marine equipment such as ASV, AUV, ROV, and various underwater sensors is increasing. The authors have focused on an oscillating water column (OWC), which is being constructed near Chagwido Island Jeju, as one of the test-sites. The main objective of the OWC is to produce wave energy and develop technologies. It has been built in the sea approximately 1 km off the coast. It has berth accommodation and some rooms that can be used as laboratories. To investigate the feasibility of its usage as a test site for marine equipment, we acquired bathymetric data around the OWC by using a multi-beam echo sounder and a single-beam scanning sonar. The accessibility of the OWC from nearby ports and the use of support vessels or ships were also investigated. 3D point cloud data from the multi-beam echo sounder and 2D acoustic images from the scanning sonar are expected to be used as references for identifying changes over time. In addition, through these experiments, we derived a procedure to use this facility as a test site by using the IDEF0 functional modelling method. Based on this preliminary investigation and previously reported examples, we determined the general conditions and preferences for evaluating the performance of various marine equipment heuristically. Finally, we developed five applications that were derived from this investigation.

Effect of Joint Stiffness on the Rock Block Behavior in the Distinct Element Analysis (개별요소해석에서 절리강성이 블록 거동에 미치는 영향)

  • Ryu, Chang-Ha;Choi, Byung-Hee
    • Explosives and Blasting
    • /
    • v.37 no.2
    • /
    • pp.14-21
    • /
    • 2019
  • Distinct element method is a powerful numerical tool for modelling the jointed rock masses. It is also a useful tool for modelling of later stage of blasting requiring large displacement. The distinct element method utilizes a rigid block idea in which the interacting force between distinct elements is calculated from contact displacement as elements penetrate slightly. The properties of joints defined as the boundaries of distinct elements are critical parameters to determine the block behavior, and affect the deformation and failure mode. However, regardless of real joint properties, joint stiffnesses have sometimes been selected without special concern just to prevent elements from penetrating too far into each other in some quasi-static problems. Depending on whether the main interest in the analysis is the prediction of the deformation with high precision, or the prediction of the block behaviour after failure, the input data such as joint stiffness may or may not have a significant effect on the results. The purpose of this study is to provide a sound understanding of the effect of the joint stiffness on the distinct element analysis results, and to help guide the selection of input data.

Spatio-Temporal Projection of Invasion Using Machine Learning Algorithm-MaxEnt

  • Singye Lhamo;Ugyen Thinley;Ugyen Dorji
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.2
    • /
    • pp.105-117
    • /
    • 2023
  • Climate change and invasive alien plant species (IAPs) are having a significant impact on mountain ecosystems. The combination of climate change and socio-economic development is exacerbating the invasion of IAPs, which are a major threat to biodiversity loss and ecosystem functioning. Species distribution modelling has become an important tool in predicting the invasion or suitability probability under climate change based on occurrence data and environmental variables. MaxEnt modelling was applied to predict the current suitable distribution of most noxious weed A. adenophora (Spreng) R. King and H. Robinson and analysed the changes in distribution with the use of current (year 2000) environmental variables and future (year 2050) climatic scenarios consisting of 3 representative concentration pathways (RCP 2.6, RCP 4.5 and RCP 8.5) in Bhutan. Species occurrence data was collected from the region of interest along the road side using GPS handset. The model performance of both current and future climatic scenario was moderate in performance with mean temperature of wettest quarter being the most important variable that contributed in model fit. The study shows that current climatic condition favours the A. adenophora for its invasion and RCP 2.6 climatic scenario would promote aggression of invasion as compared to RCP 4.5 and RCP 8.5 climatic scenarios. This can lead to characterization of the species as preferring moderate change in climatic conditions to be invasive, while extreme conditions can inhibit its invasiveness. This study can serve as reference point for the conservation and management strategies in control of this species and further research.

Sensitivity Analysis in the Prediction of Coastal Erosion due to Storm Events: case study-Ilsan beach (태풍 기인 연안침식 예측의 불확실성 분석: 사례연구-일산해변)

  • Son, Donghwi;Yoo, Jeseon;Shin, Hyunhwa
    • Journal of Coastal Disaster Prevention
    • /
    • v.6 no.3
    • /
    • pp.111-120
    • /
    • 2019
  • In coastal morphological modelling, there are a number of input factors: wave height, water depth, sand particle size, bed friction coefficients, coastal structures and so forth. Measurements or estimates of these input data may include uncertainties due to errors by the measurement or hind-casting methods. Therefore, it is necessary to consider the uncertainty of each input data and the range of the uncertainty during the evaluation of numerical results. In this study, three uncertainty factors are considered with regard to the prediction of coastal erosion in Ilsan beach located in Ilsan-dong, Ulsan metropolitan city. Those are wave diffraction effect of XBeach model, wave input scenario and the specification of the coastal structure. For this purpose, the values of mean wave direction, significant wave height and the height of the submerged breakwater were adjusted respectively and the followed numerical results of morphological changes are analyzed. There were erosion dominant patterns as the wave direction is perpendicular to Ilsan beach, the higher significant wave height, and the lower height of the submerged breakwater. Furthermore, the rate of uncertainty impacts among mean wave direction, significant wave height and the height of the submerged breakwater are compared. In the study area, the uncertainty influence by the wave input scenario was the largest, followed by the height of the submerged breakwater and the mean wave direction.

Three Dimensional Last Data Generation System Utilizing Cross Sectional Free Form Deformation (단면 분할 FFD를 이용한 3D 라스트 데이터 생성시스템 개발)

  • Kim, Si-Kyung;Park, In-Duck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.768-773
    • /
    • 2005
  • A new approach for human foot modelling and last design based on the cross sectional method is presented in this paper. The proposed last design method utilizes the dynamic trimmed parametric patches for the foot 3D data and last 3D data. The cross section a surface of 3D foot for the 3D last, design modeling of free form geometric last shapes. The proposed last design scheme wraps the 3D last data surrounding the measured 3D foot data with the effect of deforming the last design rule The last design rule of the FFD is constructed on the FFD lattice based on foot-last shape analysis. In addition, the control points of FFD lattice are constructed with cross sectional data interpolation methods from the a finite set of 3D foot data. The deformed 3D last result obtained from the proposed FFD is saved as a 3D dxf foot data. The experimental results demonstrate that the last designed with the proposed scheme has good performance.

Point Data Reduction in Reverse Engineering by Delaunay Triangulation (역공학에서의 Delaunay 삼각형 분할에 의한 점 데이터 감소)

  • Lee, Seok-Hui;Heo, Seong-Min;Kim, Ho-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1246-1252
    • /
    • 2001
  • Reverse engineering has been widely used for the shape reconstruction of an object without CAD data and the measurement of clay or wood models for the development of new products. To generate a surface from measured points by a laser scanner, typical steps include the scanning of a clay or wood model and the generation of manufacturing data like STL file. A laser scanner has a great potential to get geometrical data of a model for its fast measuring speed and higher precision. The data from a laser scanner are composed of many line stripes of points. A new approach to remove point data with Delaunay triangulation is introduced to deal with problems during reverse engineering process. This approach can be used to reduce a number of measuring data from laser scanner within tolerance, thus it can avoid the time for handling point data during modelling process and the time for verifying and slicing STL model during RP process.

Study on Object Modelling for Oceanic Data (해양자료 객체 DB 모델링 연구)

  • 박종민;서상현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.454-457
    • /
    • 1999
  • Most of oceanic information are related with spatial properties directly or impliedly and Presented differently depend on applications. So, without efficient integrated data model and strategies it inevitably occurs redundant development results of database itself and application systems. Therefor to avoid these inefficiencies it is most basic need to establish the ocean data infrastructure based on unified data model. In this paper we suggest the guideline for object data model based on ocean GIS concept followed with a sample primitive object data model implementing tile proposed guideline. With this unified data model we could expect the improvement ill the every phase of ocean related environment from data acquisition through translation and utilizing to service and exchange.

  • PDF

Transformation Model of Vertical Datum between Land and Ocean Height System using the Precise Spirit Leveling Results (정밀수준측량 성과를 이용한 육상 및 해상 수직기준면 변환모델링)

  • Lee, Dong-Ha;Yun, Hong-Sic;Hwang, Jin Sang;Suh, Yong-Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4D
    • /
    • pp.407-419
    • /
    • 2012
  • It is difficult to obtain the accurate and homogeneous height information over the whole Korea due to the effect of different vertical datums have been divided into land and sea part. In this study, we tried to unify the different vertical datums using the precise spirit leveling between TBM (tidal bench mark) and BM (bench mark) in order to solve the problems caused by different vertical datums. For this, the vertical datum offsets at observed points which were calculate from leveling results and then transformation model of vertical datum will be modelled using calculated offsets along the coastal line. For suggesting the precise modelling method to vertical datum transformation, we analyzed results from various interpolation methods such as Spline and LSC method. As the results from analysis, the LSC method combined with 4-parameters trend model is more suitable for modelling the offsets between vertical datums. The final transformation model of vertical datum using the combination of LSC and 4-parameter model which provides the transformation accuracies of ${\pm}10.4cm{\sim}14.8cm$ level. And, the software for vertical datum transformation that was also developed using the final model in order to convert the height information included in various spatial data effectively. Therefore, the transformation model between vertical datums of land and sea part, which is developed in this study, is expected to minimize the confusion caused by mismatch of height information in the use of spatial data, and it also can be minimize economic and time losses in various application fields such as coastal development project, coastal disaster prevention, etc.

Rapid gravity and gravity gradiometry terrain corrections via an adaptive quadtree mesh discretization (최적 4 진트리 격자화를 이용한 중력 및 중력 변화율 탐사에서의 고속 지형보정)

  • Davis, Kristofer;Kass, M.Andy;Li, Yaoguo
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.88-97
    • /
    • 2011
  • We present a method for modelling the terrain response of gravity gradiometry surveys utilising an adaptive quadtree mesh discretization. The data- and terrain-dependent method is tailored to provide rapid and accurate terrain corrections for draped and barometric airborne surveys. The surface used in the modelling of the terrain effect for each datum is discretized automatically to the largest cell size that will yield the desired accuracy, resulting in much faster modelling than full-resolution calculations. The largest cell sizes within the model occur in areas of minimal terrain variation and at large distances away from the datum location. We show synthetic and field examples for proof of concept. In the presented field example, the adaptive quadtree method reduces the computational cost by performing 351 times fewer calculations than the full model would require while retaining an accuracy of one E$\"{o}$tv$\"{o}$s for the gradient data. The method is also used for the terrain correction of the gravity field and performed 310 times faster compared with a calculation of the full digital elevation model.

Acquisition and Accuracy Assessment of topographic information of inaccessible areas (위성영상을 이용한 비접근지역의 지형정보 획득 및 정확도 평가)

  • 고종식;최윤수;김욱남;이상준
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.393-398
    • /
    • 2004
  • It is transformed map data of different coordinate system into unique system and We triedto make topographic map on non-accessible area. We transformed Russian map coordinates(Krassovsky, G-K projection) intoWGS-84, TM projection and assessed accuracy. The RMSE(in East and West bearings : ${\pm}$13.67m, in North and South bearings : ${\pm}$14.67m) using only SCP(Survey Control Point) is more accurate than that(in East and West bearings : ${\pm}$24.26m, in North and South bearings : ${\pm}$25.32m) using SCP, intersection of road, bridge. Exterior orientation parameters are estimated using rigorous modelling and GCPs are classified with SCP, intersection of road, bridge. Rigorous modelling is performed with each classified GCP. The modelling result usingonly SCP(in East and West bearings : ${\pm}$13.53m, in North and South bearings : ${\pm}$14.22m) is more accurate than that using intersection of road(in East and West bearings : ${\pm}$16.l1m, in North and South bearings: ${\pm}$23.85m), bridge(in East and West bearings : ${\pm}$17.21m, in North and South bearings : ${\pm}$21.82m). The results means that SCP is more accurate than intersection of road, bridge because of edit to generate map. therefore, SCP is suitable for object of GCP in paper map(1:50,000). Geographic information on non-accessible area and analysis is performed. The results of stereoscopic plotting is well matched old map data on road, railroad but, many objects are generally editted. It is possible to update on new objects(building, tributary ‥‥etc). Ability of description using SPOT-5(stereo) is more than features and items included in 1:50,000 topographic map. Therefore, it is possible to make large scale map than 1:50,000 topographic map using SPOT-5 imagery. But, there are many problems(accurate GCPs, obtain of high resolution stereoscopic satellite imagery in a period ‥‥ etc) to make topographic map on non-accessible area. It is actually difficult to solve these problems. therefore, it is possible to update 1:50,000 topographic map in part of topographic map generation.

  • PDF