• Title/Summary/Keyword: data modeling

Search Result 9,742, Processing Time 0.038 seconds

Derivation of Green Infrastructure Planning Factors for Reducing Particulate Matter - Using Text Mining - (미세먼지 저감을 위한 그린인프라 계획요소 도출 - 텍스트 마이닝을 활용하여 -)

  • Seok, Youngsun;Song, Kihwan;Han, Hyojoo;Lee, Junga
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.79-96
    • /
    • 2021
  • Green infrastructure planning represents landscape planning measures to reduce particulate matter. This study aimed to derive factors that may be used in planning green infrastructure for particulate matter reduction using text mining techniques. A range of analyses were carried out by focusing on keywords such as 'particulate matter reduction plan' and 'green infrastructure planning elements'. The analyses included Term Frequency-Inverse Document Frequency (TF-IDF) analysis, centrality analysis, related word analysis, and topic modeling analysis. These analyses were carried out via text mining by collecting information on previous related research, policy reports, and laws. Initially, TF-IDF analysis results were used to classify major keywords relating to particulate matter and green infrastructure into three groups: (1) environmental issues (e.g., particulate matter, environment, carbon, and atmosphere), target spaces (e.g., urban, park, and local green space), and application methods (e.g., analysis, planning, evaluation, development, ecological aspect, policy management, technology, and resilience). Second, the centrality analysis results were found to be similar to those of TF-IDF; it was confirmed that the central connectors to the major keywords were 'Green New Deal' and 'Vacant land'. The results from the analysis of related words verified that planning green infrastructure for particulate matter reduction required planning forests and ventilation corridors. Additionally, moisture must be considered for microclimate control. It was also confirmed that utilizing vacant space, establishing mixed forests, introducing particulate matter reduction technology, and understanding the system may be important for the effective planning of green infrastructure. Topic analysis was used to classify the planning elements of green infrastructure based on ecological, technological, and social functions. The planning elements of ecological function were classified into morphological (e.g., urban forest, green space, wall greening) and functional aspects (e.g., climate control, carbon storage and absorption, provision of habitats, and biodiversity for wildlife). The planning elements of technical function were classified into various themes, including the disaster prevention functions of green infrastructure, buffer effects, stormwater management, water purification, and energy reduction. The planning elements of the social function were classified into themes such as community function, improving the health of users, and scenery improvement. These results suggest that green infrastructure planning for particulate matter reduction requires approaches related to key concepts, such as resilience and sustainability. In particular, there is a need to apply green infrastructure planning elements in order to reduce exposure to particulate matter.

The Production Techniques of Korean Dried-lacquer Buddha Statue seen through the Seated Dried-lacquer Bodhisattva Statue in Okura Museum of Art in Tokyo (도쿄 오쿠라슈코칸 협저보살좌상(東京 大倉集古館 夾紵菩薩坐像)을 통하여 본 한국 협저불상의 제작기법)

  • Jeong, Ji-yeon
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.3
    • /
    • pp.172-193
    • /
    • 2013
  • This study examines the production techniques and raw materials shown in the Korean dried-lacquer statues of Buddha through a careful observation of the Seated Dried-lacquer Bodhisattva Statue from the late Goryeo Dynasty which is currently possessed by Okura Museum of Art in Tokyo. As a method of study, the X-ray data and the results from a field survey were combined to analyze the production techniques and the characteristics of raw materials. Based on this analysis, a hypothesis was established on the production process and verified through a reenactment of the actual production process. Then, the characteristics of the techniques applied to each process and the raw materials were recorded in detail. Specifically, the dried lacquer techniques and the raw materials were estimated based on the results of naked-eye observation in comparison with the literature, especially the records of "Xiu Shi Lu" written by Huang Cheng of the Ming Dynasty which is considered as 'the textbook of lacquer techniques.' The raw materials used in the production of the traditional Korean lacquerware inlaid with mother-of-pearl were also referenced. As a result, it was found that the features of production techniques and the raw materials found in the Statue at Okura Museum of Art have many similarities with those of the Seated Dried-lacquer Statue of Lohan (Arhat) from Yuanfu 2 Nian Ming (1098) of the Song Dynasty which is currently at the Honolulu Museum of Art. In particular, the similarities include that the interior of the statue being vacant because the clay and the wood core were not replaced after being removed from the prototype, that the complete form was made in the clay forming stage to apply the lacquer with baste fiber fabric, that the clay and the wood core were removed through the bottom of the statue, and that the modeling stage was omitted and the final coat over the statue is very thin. Additionally, decorating with ornaments like Bobal and Youngrak made of plastic material was a technique widely popular in the Song Dynasty, suggesting that the Seated Dried-lacquer Bodhisattva Statue in Okura Museum of Art was greatly affected by the production techniques of the Dried-lacquer Buddha Statue from the Song Dynasty. There is no precise record on the origin and history of the Korean Dried-lacquer Buddha Statues and the number of existing works is also very limited. Even the records in "Xuanhe Fengshi Gaoli Tujing" that tells us about the origin of the Dried-lacquer Buddha Statue from the Yuan Feng Period (1078~1085) do not indicate the time of transmission. It is also difficult to trace the clear route of transmission of production techniques through existing Dried-lacquer Buddha Statues. Fortunately, this study could at least reveal that the existing Dried-lacquer Buddha Statues of Korea, including the one at Okura Museum of Art, have applied the production techniques rather differently from those used in the production of Japanese Datsukatsu Dried-lacquer Buddha Statues that have been known as the standard rule in making dried-lacquer statues of Buddha for a long time.

Characteristics Analysis of Snow Particle Size Distribution in Gangwon Region according to Topography (지형에 따른 강원지역의 강설입자 크기 분포 특성 분석)

  • Bang, Wonbae;Kim, Kwonil;Yeom, Daejin;Cho, Su-jeong;Lee, Choeng-lyong;Lee, Daehyung;Ye, Bo-Young;Lee, GyuWon
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.227-239
    • /
    • 2019
  • Heavy snowfall events frequently occur in the Gangwon province, and the snowfall amount significantly varies in space due to the complex terrain and topographical modulation of precipitation. Understanding the spatial characteristics of heavy snowfall and its prediction is particularly challenging during snowfall events in the easterly winds. The easterly wind produces a significantly different atmospheric condition. Hence, it brings different precipitation characteristics. In this study, we have investigated the microphysical characteristics of snowfall in the windward and leeward sides of the Taebaek mountain range in the easterly condition. The two snowfall events are selected in the easterly, and the snow particles size distributions (SSD) are observed in the four sites (two windward and two leeward sites) by the PARSIVEL distrometers. We compared the characteristic parameters of SSDs that come from leeward sites to that of windward sites. The results show that SSDs of windward sites have a relatively wide distribution with many small snow particles compared to those of leeward sites. This characteristic is clearly shown by the larger characteristic number concentration and characteristic diameter in the windward sites. Snowfall rate and ice water content of windward also are larger than those of leeward sites. The results indicate that a new generation of snowfall particles is dominant in the windward sites which is likely due to the orographic lifting. In addition, the windward sites show heavy aggregation particles by nearby zero ground temperature that is likely driven by the wet and warm condition near the ocean.

The Study of Radiation Exposed dose According to 131I Radiation Isotope Therapy (131I 방사성 동위원소 치료에 따른 피폭 선량 연구)

  • Chang, Boseok;Yu, Seung-Man
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.653-659
    • /
    • 2019
  • The purpose of this study is to measure the (air dose rate of radiation dose) the discharged patient who was administrated high dose $^{131}I$ treatment, and to predict exposure radiation dose in public person. The dosimetric evaluation was performed according to the distance and angle using three copper rings in 30 patients who were treated with over 200mCi high dose Iodine therapy. The two observer were measured using a GM surverymeter with 8 point azimuth angle and three difference distance 50, 100, 150cm for precise radion dose measurement. We set up three predictive simulations to calculate the exposure dose based on this data. The most highest radiation dose rate was showed measuring angle $0^{\circ}$ at the height of 1m. The each distance average dose rate was used the azimuth angle average value of radiation dose rate. The maximum values of the external radiation dose rate depending on the distance were $214{\pm}16.5$, $59{\pm}9.1$ and $38{\pm}5.8{\mu}Sv/h$ at 50, 100, 150cm, respectively. If high dose Iodine treatment patient moves 5 hours using public transportation, an unspecified person in a side seat at 50cm is exposed 1.14 mSv radiation dose. A person who cares for 4days at a distance of 1 meter from a patient wearing a urine bag receives a maximum radiation dose of 6.5mSv. The maximum dose of radiation that a guardian can receive is 1.08mSv at a distance of 1.5m for 7days. The annual radiation dose limit is exceeded in a short time when applied the our developed radiation dose predictive modeling on the general public person who was around the patients with Iodine therapy. This study can be helpful in suggesting a reasonable guideline of the general public person protection system after discharge of high dose Iodine administered patients.

Predicting Forest Gross Primary Production Using Machine Learning Algorithms (머신러닝 기법의 산림 총일차생산성 예측 모델 비교)

  • Lee, Bora;Jang, Keunchang;Kim, Eunsook;Kang, Minseok;Chun, Jung-Hwa;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.29-41
    • /
    • 2019
  • Terrestrial Gross Primary Production (GPP) is the largest global carbon flux, and forest ecosystems are important because of the ability to store much more significant amounts of carbon than other terrestrial ecosystems. There have been several attempts to estimate GPP using mechanism-based models. However, mechanism-based models including biological, chemical, and physical processes are limited due to a lack of flexibility in predicting non-stationary ecological processes, which are caused by a local and global change. Instead mechanism-free methods are strongly recommended to estimate nonlinear dynamics that occur in nature like GPP. Therefore, we used the mechanism-free machine learning techniques to estimate the daily GPP. In this study, support vector machine (SVM), random forest (RF) and artificial neural network (ANN) were used and compared with the traditional multiple linear regression model (LM). MODIS products and meteorological parameters from eddy covariance data were employed to train the machine learning and LM models from 2006 to 2013. GPP prediction models were compared with daily GPP from eddy covariance measurement in a deciduous forest in South Korea in 2014 and 2015. Statistical analysis including correlation coefficient (R), root mean square error (RMSE) and mean squared error (MSE) were used to evaluate the performance of models. In general, the models from machine-learning algorithms (R = 0.85 - 0.93, MSE = 1.00 - 2.05, p < 0.001) showed better performance than linear regression model (R = 0.82 - 0.92, MSE = 1.24 - 2.45, p < 0.001). These results provide insight into high predictability and the possibility of expansion through the use of the mechanism-free machine-learning models and remote sensing for predicting non-stationary ecological processes such as seasonal GPP.

A Study on the Development of High Sensitivity Collision Simulation with Digital Twin (디지털 트윈을 적용한 고감도 충돌 시뮬레이션 개발을 위한 연구)

  • Ki, Jae-Sug;Hwang, Kyo-Chan;Choi, Ju-Ho
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.813-823
    • /
    • 2020
  • Purpose: In order to maximize the stability and productivity of the work through simulation prior to high-risk facilities and high-cost work such as dismantling the facilities inside the reactor, we intend to use digital twin technology that can be closely controlled by simulating the specifications of the actual control equipment. Motion control errors, which can be caused by the time gap between precision control equipment and simulation in applying digital twin technology, can cause hazards such as collisions between hazardous facilities and control equipment. In order to eliminate and control these situations, prior research is needed. Method: Unity 3D is currently the most popular engine used to develop simulations. However, there are control errors that can be caused by time correction within Unity 3D engines. The error is expected in many environments and may vary depending on the development environment, such as system specifications. To demonstrate this, we develop crash simulations using Unity 3D engines, which conduct collision experiments under various conditions, organize and analyze the resulting results, and derive tolerances for precision control equipment based on them. Result: In experiments with collision experiment simulation, the time correction in 1/1000 seconds of an engine internal function call results in a unit-hour distance error in the movement control of the collision objects and the distance error is proportional to the velocity of the collision. Conclusion: Remote decomposition simulators using digital twin technology are considered to require limitations of the speed of movement according to the required precision of the precision control devices in the hardware and software environment and manual control. In addition, the size of modeling data such as system development environment, hardware specifications and simulations imitated control equipment and facilities must also be taken into account, available and acceptable errors of operational control equipment and the speed required of work.

International and domestic research trends in longitudinal connectivity evaluations of aquatic ecosystems, and the applicability analysis of fish-based models (수생태계 종적 연결성 평가를 위한 국내외 연구 현황 및 어류기반 종적 연속성 평가모델 적용성 분석)

  • Kim, Ji Yoon;Kim, Jai-Gu;Bae, Dae-Yeul;Kim, Hye-Jin;Kim, Jeong-Eun;Lee, Ho-Seong;Lim, Jun-Young;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.634-649
    • /
    • 2020
  • Recently, stream longitudinal connectivity has been a topic of investigation due to the frequent disconnections and the impact of aquatic ecosystems caused by the construction of small and medium-sized weirs and various artificial structures (fishways) directly influencing the stream ecosystem health. In this study, the international and domestic research trends of the longitudinal connectivity in aquatic ecosystems were evaluated and the applicability of fish-based longitudinal connectivity models used in developed countries was analyzed. For these purposes, we analyzed the current status of research on longitudinal connectivity and structural problems, fish monitoring methodology, monitoring approaches, longitudinal disconnectivity of fish movement, and biodiversity. In addition, we analyzed the current status and some technical limitations of physical habitat suitability evaluation, ecology-based water flow, eco-hydrological modeling for fish habitat connectivity, and the s/w program development for agent-based model. Numerous references, data, and various reports were examined to identify worldwide longitudinal stream connectivity evaluation models in European and non-European countries. The international approaches to longitudinal connectivity evaluations were categorized into five phases including 1) an approach integrating fish community and artificial structure surveys (two types input variables), 2) field monitoring approaches, 3) a stream geomorphological approach, 4) an artificial structure-based DB analytical approach, and 5) other approaches. the overall evaluation of survey methodologies and applicability for longitudinal stream connectivity suggested that the ICE model (Information sur la Continuite Ecologique) and the ICF model (Index de Connectivitat Fluvial), widely used in European countries, were appropriate for the application of longitudinal connectivity evaluations in Korean streams.

A Study on the Determinants of Blockchain-oriented Supply Chain Management (SCM) Services (블록체인 기반 공급사슬관리 서비스 활용의 결정요인 연구)

  • Kwon, Youngsig;Ahn, Hyunchul
    • Knowledge Management Research
    • /
    • v.22 no.2
    • /
    • pp.119-144
    • /
    • 2021
  • Recently, as competition in the market evolves from the competition among companies to the competition among their supply chains, companies are struggling to enhance their supply chain management (hereinafter SCM). In particular, as blockchain technology with various technical advantages is combined with SCM, a lot of domestic manufacturing and distribution companies are considering the adoption of blockchain-oriented SCM (BOSCM) services today. Thus, it is an important academic topic to examine the factors affecting the use of blockchain-oriented SCM. However, most prior studies on blockchain and SCMs have designed their research models based on Technology Acceptance Model (TAM) or the Unified Theory of Acceptance and Use of Technology (UTAUT), which are suitable for explaining individual's acceptance of information technology rather than companies'. Under this background, this study presents a novel model of blockchain-oriented SCM acceptance model based on the Technology-Organization-Environment (TOE) framework to consider companies as the unit of analysis. In addition, Value-based Adoption Model (VAM) is applied to the research model in order to consider the benefits and the sacrifices caused by a new information system comprehensively. To validate the proposed research model, a survey of 126 companies were collected. Among them, by applying PLS-SEM (Partial Least Squares Structural Equation Modeling) with data of 122 companies, the research model was verified. As a result, 'business innovation', 'tracking and tracing', 'security enhancement' and 'cost' from technology viewpoint are found to significantly affect 'perceived value', which in turn affects 'intention to use blockchain-oriented SCM'. Also, 'organization readiness' is found to affect 'intention to use' with statistical significance. However, it is found that 'complexity' and 'regulation environment' have little impact on 'perceived value' and 'intention to use', respectively. It is expected that the findings of this study contribute to preparing practical and policy alternatives for facilitating blockchain-oriented SCM adoption in Korean firms.

A Survey of Yeosu Sado Dinosaur Tracksite and Utilization of Educational Materials using 3D Photogrammetry (3D 사진측량법을 이용한 여수 사도 공룡발자국 화석산지 조사 및 교육자료 활용방안)

  • Jo, Hyemin;Hong, Minsun;Son, Jongju;Lee, Hyun-Yeong;Park, Kyeong-Beom;Jung, Jongyun;Huh, Min
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.662-676
    • /
    • 2021
  • The Yeosu Sado dinosaur tracksite is well known for many dinosaur tracks and research on the gregarious behavior of dinosaurs. In addition, various geological and geographical heritage sites are distributed on Sado Island. However, educational field trips for students are very limited due to accessibility according to its geological location, time constraints due to tides, and continuous weathering and damage. Therefore, this study aims to generate 3D models and images of dinosaur tracks using the photogrammetric method, which has recently been used in various fields, and then discuss the possibility of using them as paleontological research and educational contents. As a result of checking the obtained 3D images and models, it was possible to confirm the existence of footprints that were not previously discovered or could not represent details by naked eyes or photos. Even previously discovered tracks could possibly present details using 3D images that could not be expressed by photos or interpretive drawings. In addition, the 3D model of dinosaur tracks can be preserved as semi-permanent data, enabling various forms of utilization and preservation. Here we apply 3D printing and mobile augmented reality content using photogrammetric 3D models for a virtual field trip, and these models acquired by photogrammetry can be used in various educational content fields that require 3D models.

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (II): e-ASM Calibration, Effluent Prediction, Process selection, and Design (첨단 전자산업 폐수처리시설의 Water Digital Twin(II): e-ASM 모델 보정, 수질 예측, 공정 선택과 설계)

  • Heo, SungKu;Jeong, Chanhyeok;Lee, Nahui;Shim, Yerim;Woo, TaeYong;Kim, JeongIn;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.79-93
    • /
    • 2022
  • In this study, an electronics industrial wastewater activated sludge model (e-ASM) to be used as a Water Digital Twin was calibrated based on real high-tech electronics industrial wastewater treatment measurements from lab-scale and pilot-scale reactors, and examined for its treatment performance, effluent quality prediction, and optimal process selection. For specialized modeling of a high-tech electronics industrial wastewater treatment system, the kinetic parameters of the e-ASM were identified by a sensitivity analysis and calibrated by the multiple response surface method (MRS). The calibrated e-ASM showed a high compatibility of more than 90% with the experimental data from the lab-scale and pilot-scale processes. Four electronics industrial wastewater treatment processes-MLE, A2/O, 4-stage MLE-MBR, and Bardenpo-MBR-were implemented with the proposed Water Digital Twin to compare their removal efficiencies according to various electronics industrial wastewater characteristics. Bardenpo-MBR stably removed more than 90% of the chemical oxygen demand (COD) and showed the highest nitrogen removal efficiency. Furthermore, a high concentration of 1,800 mg L-1 T MAH influent could be 98% removed when the HRT of the Bardenpho-MBR process was more than 3 days. Hence, it is expected that the e-ASM in this study can be used as a Water Digital Twin platform with high compatibility in a variety of situations, including plant optimization, Water AI, and the selection of best available technology (BAT) for a sustainable high-tech electronics industry.