• Title/Summary/Keyword: data memory

Search Result 3,307, Processing Time 0.03 seconds

An Efficient Cache Management Scheme for Load Balancing in Distributed Environments with Different Memory Sizes (상이한 메모리 크기를 가지는 분산 환경에서 부하 분산을 위한 캐시 관리 기법)

  • Choi, Kitae;Yoon, Sangwon;Park, Jaeyeol;Lim, Jongtae;Lee, Seokhee;Bok, Kyoungsoo;Yoo, Jaesoo
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.8
    • /
    • pp.543-548
    • /
    • 2015
  • Recently, volume of data has been growing dramatically along with the growth of social media and digital devices. However, the existing disk-based distributed file systems have limits to their performance of data processing or data access, due to I/O processing costs and bottlenecks. To solve this problem, the caching technique is being used to manage data in the memory. In this paper, we propose a cache management scheme to handle load balancing in a distributed memory environment. The proposed scheme distributes the data according to the memory size, n distributed environments with different memory sizes. If overloaded nodes occur, it redistributes the the access time of the caching data. In order to show the superiority of the proposed scheme, we compare it with an existing distributed cache management scheme through performance evaluation.

Object-Size and Call-Site Tracing based Shared Memory Allocator for False Sharing Reduction in DSM Systems (분산 공유 메모리 시스템에서 거짓 공유를 줄이는 객체-크기 및 호출지-추적 기반 공유 메모리 할당 기법)

  • Lee, Jong-Woo;Park, Young-Ho;Yoon, Yong-Ik
    • Journal of Digital Contents Society
    • /
    • v.9 no.1
    • /
    • pp.77-86
    • /
    • 2008
  • False sharing is a result of co-location of unrelated data in the same unit of memory coherency, and is one source of unnecessary overhead being of no help to keep the memory coherency in multiprocessor systems. Moreover, the damage caused by false sharing becomes large in proportion to the granularity of memory coherency. To reduce false sharing in page-based DSM systems, it is necessary to allocate unrelated data objects that have different access patterns into the separate shared pages. In this paper we propose sized and call-site tracing-based shared memory allocator, shortly SCSTallocator. SCSTallocator places each data object requested from the different call-sites into the separate shared pages, and at the same time places each data object that has different size into different shared pages. Consequently data objects that have the different call-site and different object size prohibited from being allocated to the same shared page. Our observations show that our SCSTallocator outperforms the existing dynamic shared memory allocators. By combining the two existing allocation technique, we can reduce a considerable amount of false sharing misses.

  • PDF

Design and Performance Evaluation of a Flash Compression Layer for NAND-type Flash Memory Systems (NAND형 플래시메모리를 위한 플래시 압축 계층의 설계 및 성능평가)

  • Yim Keun Soo;Bahn Hyokyung;Koh Kern
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.4
    • /
    • pp.177-185
    • /
    • 2005
  • NAND-type flash memory is becoming increasingly popular as a large data storage for mobile computing devices. Since flash memory is an order of magnitude more expensive than magnetic disks, data compression can be effectively used in managing flash memory based storage systems. However, compressed data management in NAND-type flash memory is challenging because it supports only page-based I/Os. For example, when the size of compressed data is smaller than the page size. internal fragmentation occurs and this degrades the effectiveness of compression seriously. In this paper, we present an efficient flash compression layer (FCL) for NAND-type flash memory which stores several small compressed pages into one physical page by using a write buffer Based on prototype implementation and simulation studies, we show that the proposed scheme offers the storage of flash memory more than $140\%$ of its original size and expands the write bandwidth significantly.

Countermeasure for Anti-financial hacking (금융 hacking 방지 대응방안)

  • Hong, Sunghyuck
    • Journal of Convergence Society for SMB
    • /
    • v.3 no.1
    • /
    • pp.43-48
    • /
    • 2013
  • With the development of computer technology, and have diversified technical system attacks evolve more. Computer hardware and software has evolved more and more, performance is improved, but the basic principle of operation does not change much, it is a problem. In general, the application is placed in a running state, the program data is placed in memory. Remains in memory for efficiency of operation of the operating system, we analyze memory and memory hacking, these data will have access to data. Since a large damage occurs key, such as certificates personal information, encrypted flows out, measures should be provided by it. In this content, I want to discuss the issues and work around memory hacking.

  • PDF

A Study on the Multi-Tactical Data Link Data Management (다중 전술 데이터링크 데이터 관리에 대한 연구)

  • Hwang, Jung-Eun;Lee, Kang;Jung, Suk-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.457-464
    • /
    • 2020
  • ROK Forces operate Link-11, Link-16 and Korean Tactical Data Link System with Link-K(JTDLS: Joint Tactical Data Link System). As the change from Link-11 to Link-22 approaches, in the JTDLS Completed Business will be added tactical data link processing such as Link-22. In this paper, we propose the data management structure for data from multiple tactical data links. Also, we simulate to find ways to process a lot of data quickly using Shared Memory, In-Memory DB, Self Development DB in DLP, and then we confirm the result.

A Performance Study on CPU-GPU Data Transfers of Unified Memory Device (통합메모리 장치에서 CPU-GPU 데이터 전송성능 연구)

  • Kwon, Oh-Kyoung;Gu, Gibeom
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.5
    • /
    • pp.133-138
    • /
    • 2022
  • Recently, as GPU performance has improved in HPC and artificial intelligence, its use is becoming more common, but GPU programming is still a big obstacle in terms of productivity. In particular, due to the difficulty of managing host memory and GPU memory separately, research is being actively conducted in terms of convenience and performance, and various CPU-GPU memory transfer programming methods are suggested. Meanwhile, recently many SoC (System on a Chip) products such as Apple M1 and NVIDIA Tegra that bundle CPU, GPU, and integrated memory into one large silicon package are emerging. In this study, data between CPU and GPU devices are used in such an integrated memory device and performance-related research is conducted during transmission. It shows different characteristics from the existing environment in which the host memory and GPU memory in the CPU are separated. Here, we want to compare performance by CPU-GPU data transmission method in NVIDIA SoC chips, which are integrated memory devices, and NVIDIA SMX-based V100 GPU devices. For the experimental workload for performance comparison, a two-dimensional matrix transposition example frequently used in HPC applications was used. We analyzed the following performance factors: the difference in GPU kernel performance according to the CPU-GPU memory transfer method for each GPU device, the transfer performance difference between page-locked memory and pageable memory, overall performance comparison, and performance comparison by workload size. Through this experiment, it was confirmed that the NVIDIA Xavier can maximize the benefits of integrated memory in the SoC chip by supporting I/O cache consistency.

Large-Memory Data Processing on a Remote Memory System using Commodity Hardware (대용량 메모리 데이타 처리를 위한 범용 하드웨어 기반의 원격 메모리 시스템)

  • Jung, Hyung-Soo;Han, Hyuck;Yeom, Heon-Y.
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.9
    • /
    • pp.445-458
    • /
    • 2007
  • This article presents a novel infrastructure for large-memory database processing using commodity hardware with operating system support. We exploit inexpensive PCs and a high-speed network capable of Remote Direct Memory Access (RDMA) operations to build a new memory hierarchy between fast volatile memory and slow disk storage. The new memory hierarchy guarantees a reasonable response time, and its storage size enables us to run large-memory database systems with little performance degradation. The proposed architecture has two main components: (1) a remote memory system inside the Linux kernel to manage other computers' memory pages efficiently and (2) a remote memory pager responsible for manipulating remote read/write operations on remote memory pages. We insist that the proposed architecture is practical enough to support the rigorous demands of commercial in-memory database systems by demonstrating the performance of publicly available main-memory databases (e.g., MySQL) on our prototyped system. The experimental results show very interesting results from the TPC-C benchmark.

Design of Memory Sparing Technique to overcome Memory Hard Error I : Column Sparing (메모리 Hard Error를 극복하기 위한 메모리 Sparing 기법 설계 I : Column Sparing)

  • 구철회
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.39-42
    • /
    • 2001
  • This paper proposes the design technique of memory sparing to overcome memory hard error Memory Sparing is used to increase the reliability and availability of commercial, military and space computer such as a Data Server, Communication Server, Flight Computer in airplane and On-Board Computer in spacecraft. But the documents about this technique are rare and hard to find. This paper has some useful information about memory error correction and memory error management.

  • PDF

A Novel Memory Hierarchy for Flash Memory Based Storage Systems

  • Yim, Keno-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.4
    • /
    • pp.262-269
    • /
    • 2005
  • Semiconductor scientists and engineers ideally desire the faster but the cheaper non-volatile memory devices. In practice, no single device satisfies this desire because a faster device is expensive and a cheaper is slow. Therefore, in this paper, we use heterogeneous non-volatile memories and construct an efficient hierarchy for them. First, a small RAM device (e.g., MRAM, FRAM, and PRAM) is used as a write buffer of flash memory devices. Since the buffer is faster and does not have an erase operation, write can be done quickly in the buffer, making the write latency short. Also, if a write is requested to a data stored in the buffer, the write is directly processed in the buffer, reducing one write operation to flash storages. Second, we use many types of flash memories (e.g., SLC and MLC flash memories) in order to reduce the overall storage cost. Specifically, write requests are classified into two types, hot and cold, where hot data is vulnerable to be modified in the near future. Only hot data is stored in the faster SLC flash, while the cold is kept in slower MLC flash or NOR flash. The evaluation results show that the proposed hierarchy is effective at improving the access time of flash memory storages in a cost-effective manner thanks to the locality in memory accesses.