• Title/Summary/Keyword: data hiding technique

Search Result 85, Processing Time 0.024 seconds

Data Hiding Technique using the Characteristics of Neighboring Pixels and Encryption Techniques

  • Jung, Soo-Mok
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.163-169
    • /
    • 2022
  • In this paper, we propose a data hiding technique that effectively hides confidential data in the LSB of an image pixel by using the characteristics of the neighboring pixels of the image and the encryption techniques. In the proposed technique, the boundary surface of the image and the flat surface with little change in pixel values are investigated. At the boundary surface of the image, 1 bit of confidential data is encrypted and hidden in the LSB of the boundary pixel to preserve the characteristics of the boundary surface. In the pixels of the plane where the change in pixel value is small, 2 bits secret data is encrypted and hidden in the lower 2 bits of the corresponding pixel. In this way, when confidential data is hidden in an image, the amount of confidential data hidden in the image is greatly increased while maintaining excellent image quality. In addition, the security of hidden confidential data is strongly maintained. When confidential data is hidden by applying the proposed technique, the amount of confidential data concealed increases by up to 92.2% compared to the existing LSB method. The proposed technique can be effectively used to hide copyright information in commercial images.

Adaptive Data Hiding based on Turbo Coding in DCT Domain

  • Yang, Jie;Lee, Moon Ho;Chen, Xinhao
    • Journal of Broadcast Engineering
    • /
    • v.7 no.2
    • /
    • pp.192-201
    • /
    • 2002
  • This paper develops a novel robust information hiding technique that uses channel codes derived from the error-correcting coder. The message encoded by the cover encoder is hidden in DCT transform domain of the cover image. The method exploits the sensitivity of human eyes to adaptively embed a visually recognizable message in an image without affecting the perceptual quality of the underlying cover image. Experimental results show that the proposed data hiding technique is robust to cropping operations, lossy JPEG compression, noise interference and secure against known stego attacks. The performance of the proposed scheme with turbo coder is superior to that without turbo coder.

Advanced LSB Technique for Hiding Messages in Audio Steganography (오디오 스테가노그래피에 자료를 숨기기 위한 개선된 LSB 기법)

  • Ji, Seon Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.69-75
    • /
    • 2014
  • Audio seganography is the art and science of writing hidden messages that evolves as a new secret communication method. And audio steganography is similar to the process of modifying the Least Significant Bit of image files 8th LSB layer embedding has been done for desired binary messages. The effective of steganographic tools is to obtain imperceptible and robust way to conceal high rate of secret data. The objective of this paper is to propose a method for hiding the secret messages in safer manner from external attacks by modified LSB technique and encryption rearrangement key.

Optical Image Hiding Technique using Real-Valued Decoding Key (실수값 복원키를 이용한 광 영상 은닉 기술)

  • Cho, Kyu-Bo;Seo, Dong-Hoan;Choi, Eun-chang
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.3
    • /
    • pp.168-173
    • /
    • 2011
  • In this paper, an optical image hiding technique using real-valued decoding key is proposed. In the embedding process, a each zero-padded original image placed in a quadrants on an input plane is multiplied by a statistically independent random phase pattern and is Fourier transformed. An encoded image is obtained by taking the real-valued data from the Fourier transformed image. And then a phase-encoded pattern, used as a hidden image and a decoding key, is generated by the use of multiple phase wrapping from the encoded images. A transmitted image is made from the linear superposition of the weighted hidden images and a cover image. In reconstruction process, the mirror reconstructed images can be obtained at two quadrants by the inverse-Fourier transform of the product of the transmitted image and the decoding key. Computer simulation and optical experiment are demonstrated in order to confirm the proposed technique.

Spatial Error Concealment Technique for Losslessly Compressed Images Using Data Hiding in Error-Prone Channels

  • Kim, Kyung-Su;Lee, Hae-Yeoun;Lee, Heung-Kyu
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.168-173
    • /
    • 2010
  • Error concealment techniques are significant due to the growing interest in imagery transmission over error-prone channels. This paper presents a spatial error concealment technique for losslessly compressed images using least significant bit (LSB)-based data hiding to reconstruct a close approximation after the loss of image blocks during image transmission. Before transmission, block description information (BDI) is generated by applying quantization following discrete wavelet transform. This is then embedded into the LSB plane of the original image itself at the encoder. At the decoder, this BDI is used to conceal blocks that may have been dropped during the transmission. Although the original image is modified slightly by the message embedding process, no perceptible artifacts are introduced and the visual quality is sufficient for analysis and diagnosis. In comparisons with previous methods at various loss rates, the proposed technique is shown to be promising due to its good performance in the case of a loss of isolated and continuous blocks.

Reversible data hiding technique applying triple encryption method (삼중 암호화 기법을 적용한 가역 데이터 은닉기법)

  • Jung, Soo-Mok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.36-44
    • /
    • 2022
  • Reversible data hiding techniques have been developed to hide confidential data in the image by shifting the histogram of the image. These techniques have a weakness in which the security of hidden confidential data is weak. In this paper, to solve this drawback, we propose a technique of triple encrypting confidential data using pixel value information and hiding it in the cover image. When confidential data is triple encrypted using the proposed technique and hidden in the cover image to generate a stego-image, since encryption based on pixel information is performed three times, the security of confidential data hidden by triple encryption is greatly improved. In the experiment to measure the performance of the proposed technique, even if the triple-encrypted confidential data was extracted from the stego-image, the original confidential data could not be extracted without the encryption keys. And since the image quality of the stego-image is 48.39dB or higher, it was not possible to recognize whether confidential data was hidden in the stego-image, and more than 30,487 bits of confidential data were hidden in the stego-image. The proposed technique can extract the original confidential data from the triple-encrypted confidential data hidden in the stego-image without loss, and can restore the original cover image from the stego-image without distortion. Therefore, the proposed technique can be effectively used in applications such as military, medical, digital library, where security is important and it is necessary to completely restore the original cover image.

The Improved-Scheme of Audio Steganography using LSB Techniques (LSB 기법을 이용하는 개선된 오디오 스테가노그래피)

  • Ji, Seon-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.5
    • /
    • pp.37-42
    • /
    • 2012
  • Audio steganography is quite similar to the procedure of modifying the least significant bit(LSB) of image media files. The most widely used technique today is hiding of secret messages into a digitized audio signal. In this paper, I propose a new method for hiding messages from attackers, high data inserting rate is achieved. In other words, based on the LSB hiding method and digitized to change the bit position of a secret message, an encrypted stego medium sent to the destination in safe way.

Design of Fluctuation Function to Improve BER Performance of Data Hiding in Encrypted Image (암호화된 영상의 데이터 은닉 기법의 오류 개선을 위한 섭동 함수 설계)

  • Kim, Young-Hun;Lim, Dae-Woon;Kim, Young-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.3
    • /
    • pp.307-316
    • /
    • 2016
  • Reversible data hiding is a technique to hide any data without affecting the original image. Zhang proposed the encryption of original image and a data hiding scheme in encrypted image. First, the encrypted image is decrypted and uses the fluctuation function which exploits the spatial correlation property of decrypted image to extract hidden data. In this paper, the new fluctuation function is proposed to reduce errors which arise from the process extracting hidden data and the performance is verified by simulation.

Data hiding in partially encrypted HEVC video

  • Xu, Dawen
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.446-458
    • /
    • 2020
  • In this study, an efficient scheme for hiding data directly in partially encrypted versions of high efficiency video coding (HEVC) videos is proposed. The content owner uses stream cipher to selectively encrypt some HEVC-CABAC bin strings in a format-compliant manner. Then, the data hider embeds the secret message into the encrypted HEVC videos using the specific coefficient modification technique. Consequently, it can be used in third-party computing environments (more generally, cloud computing). For security and privacy purposes, service providers cannot access the visual content of the host video. As the coefficient is only slightly modified, the quality of the decrypted video is satisfactory. The encrypted and marked bitstreams meet the requirements of format compatibility, and have the same bit rate. At the receiving end, data extraction can be performed in the encrypted domain or decrypted domain that can be adapted to different application scenarios. Several standard video sequences with different resolutions and contents have been used for experimental evaluation.

Data Hiding Based on BTC using EMD (EMD를 사용한 BTC 기반의 데이터 은닉)

  • Kim, Cheonshik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.11-16
    • /
    • 2014
  • Block truncation coding (BTC) is a recent technique used for compression of monochrome image data. The original algorithm of BTC implement to use the standard mean and the standard deviation. For data hiding, it is needed to modify bit-planes of an images. These modifications yields unacceptable quality of BTC images. Thus, we propose IODBTC (Improved Ordered dithering BTC) improving BTC. In this paper, we improve this problem. Experimental results show that the reconstructed secret messages are the same as the original secret messages, and that the proposed scheme exhibits a good BTC images compared to that of previous schemes.