• 제목/요약/키워드: data factorization

검색결과 123건 처리시간 0.026초

추천시스템에 활용되는 Matrix Factorization 중 FM과 HOFM의 비교 (Compare to Factorization Machines Learning and High-order Factorization Machines Learning for Recommend system)

  • 조성은
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권4호
    • /
    • pp.731-737
    • /
    • 2018
  • 추천 시스템은 컨텐츠, 온라인 커머스, 소셜 네트워크, 광고 시스템 등 많은 분야에서 사용자가 관심 있을 만한 정보를 선별 제안함을 목적으로 활발하게 연구되고 있다. 그러나 과거 선호도 데이터를 기반으로 제안하는 추천시스템이 많고 과거 데이터가 적거나 없는 사용자를 대상으로는 제공하기 어려우므로 낮은 성능을 보인다는 부문에서 문제점이 있다. 따라서 더욱 고차원적인 데이터 분석에 관한 관심이 증가하고 있고 Matrix Factorization이 주목받고 있다. 이 논문은 그 중 추천시스템에서 주목받는 Factorization Machines Learning(FM)모델과 고차원 데이터 분석인 High-order Factorization Machines Learning(HOFM)의 비교와 재연을 연구하고 제안 한다.

Matrix Factorization을 이용한 음성 특징 파라미터 추출 및 인식 (Feature Parameter Extraction and Speech Recognition Using Matrix Factorization)

  • 이광석;허강인
    • 한국정보통신학회논문지
    • /
    • 제10권7호
    • /
    • pp.1307-1311
    • /
    • 2006
  • 본 연구에서는 행렬 분해 (Matrix Factorization)를 이용하여 음성 스펙트럼의 부분적 특정을 나타낼 수 있는 새로운 음성 파라마터를 제안한다. 제안된 파라미터는 행렬내의 모든 원소가 음수가 아니라는 조건에서 행렬분해 과정을 거치게 되고 고차원의 데이터가 효과적으로 축소되어 나타남을 알 수 있다. 차원 축소된 데이터는 입력 데이터의 부분적인 특성을 표현한다. 음성 특징 추출 과정에서 일반적으로 사용되는 멜 필터뱅크 (Mel-Filter Bank)의 출력 을 Non-Negative 행렬 분해(NMF:Non-Negative Matrix Factorization) 알고리즘의 입 력으로 사용하고, 알고리즘을 통해 차원 축소된 데이터를 음성인식기의 입력으로 사용하여 멜 주파수 캡스트럼 계수 (MFCC: Mel Frequency Cepstral Coefficient)의 인식결과와 비교해 보았다. 인식결과를 통하여 일반적으로 음성인식기의 성능평가를 위해 사용되는 MFCC에 비하여 제안된 특정 파라미터가 인식 성능이 뛰어남을 알 수 있었다.

ITERATIVE FACTORIZATION APPROACH TO PROJECTIVE RECONSTRUCTION FROM UNCALIBRATED IMAGES WITH OCCLUSIONS

  • Shibusawa, Eijiro;Mitsuhashi, Wataru
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.737-741
    • /
    • 2009
  • This paper addresses the factorization method to estimate the projective structure of a scene from feature (points) correspondences over images with occlusions. We propose both a column and a row space approaches to estimate the depth parameter using the subspace constraints. The projective depth parameters are estimated by maximizing projection onto the subspace based either on the Joint Projection matrix (JPM) or on the the Joint Structure matrix (JSM). We perform the maximization over significant observation and employ Tardif's Camera Basis Constraints (CBC) method for the matrix factorization, thus the missing data problem can be overcome. The depth estimation and the matrix factorization alternate until convergence is reached. Result of Experiments on both real and synthetic image sequences has confirmed the effectiveness of our proposed method.

  • PDF

문자 수준 컨볼루션 뉴럴 네트워크를 이용한 추천시스템에서의 행렬 분해법 개선 (Improving on Matrix Factorization for Recommendation Systems by Using a Character-Level Convolutional Neural Network)

  • 손동희;심규석
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제24권2호
    • /
    • pp.93-98
    • /
    • 2018
  • 추천시스템은 기업의 매출을 최대화 하기 위해, 사용자에게 관심도가 높은 제품을 제공해준다. 행렬 분해법은 추천시스템에서 자주 사용되는 방법으로 불완전한 사용자-제품 평점 행렬을 기반으로 한다. 하지만 제품과 사용자의 수가 점점 많아지면서, 데이터의 희소성문제로 인해 정확한 추천이 힘들어졌다. 이러한 문제점을 극복하기 위해, 제품과 관련된 텍스트 데이터를 사용하는 행렬 분해법 알고리즘이 최근에 제시되었다. 이런 행렬 분해법 알고리즘 중, 단어 수준 컨볼루션 뉴럴 네트워크를 사용하는 방법이 단어수준 특징들을 추출하여 텍스트 데이터를 효과적으로 반영한다. 하지만 단어수준 컨볼루션 뉴럴 네트워크에서는 학습해야 하는 파라미터의 수가 많다는 문제점이 있다. 그러므로 본 논문에서는 텍스트 데이터로부터 문자 수준 특징들을 뽑아 내기 위해 문자 수준 컨볼루션 뉴럴 네트워크를 사용하는 행렬분해법을 제안한다. 또한 제안하는 행렬 분해법의 성능을 검증하기 위해 실제 데이터를 이용하여 실험을 진행하였다.

Parts-Based Feature Extraction of Spectrum of Speech Signal Using Non-Negative Matrix Factorization

  • Park, Jeong-Won;Kim, Chang-Keun;Lee, Kwang-Seok;Koh, Si-Young;Hur, Kang-In
    • Journal of information and communication convergence engineering
    • /
    • 제1권4호
    • /
    • pp.209-212
    • /
    • 2003
  • In this paper, we proposed new speech feature parameter through parts-based feature extraction of speech spectrum using Non-Negative Matrix Factorization (NMF). NMF can effectively reduce dimension for multi-dimensional data through matrix factorization under the non-negativity constraints, and dimensionally reduced data should be presented parts-based features of input data. For speech feature extraction, we applied Mel-scaled filter bank outputs to inputs of NMF, than used outputs of NMF for inputs of speech recognizer. From recognition experiment result, we could confirm that proposed feature parameter is superior in recognition performance than mel frequency cepstral coefficient (MFCC) that is used generally.

Non-Negative Matrix Factorization을 이용한 음성 스펙트럼의 부분 특징 추출 (Parts-based Feature Extraction of Speech Spectrum Using Non-Negative Matrix Factorization)

  • 박정원;김창근;허강인
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.49-52
    • /
    • 2003
  • In this paper, we propose new speech feature parameter using NMf(Non-Negative Matrix Factorization). NMF can represent multi-dimensional data based on effective dimensional reduction through matrix factorization under the non-negativity constraint, and reduced data present parts-based features of input data. In this paper, we verify about usefulness of NMF algorithm for speech feature extraction applying feature parameter that is got using NMF in Mel-scaled filter bank output. According to recognition experiment result, we could confirm that proposal feature parameter is superior in recognition performance than MFCC(mel frequency cepstral coefficient) that is used generally.

  • PDF

Nonnegative Matrix Factorization with Orthogonality Constraints

  • Yoo, Ji-Ho;Choi, Seung-Jin
    • Journal of Computing Science and Engineering
    • /
    • 제4권2호
    • /
    • pp.97-109
    • /
    • 2010
  • Nonnegative matrix factorization (NMF) is a popular method for multivariate analysis of nonnegative data, which is to decompose a data matrix into a product of two factor matrices with all entries restricted to be nonnegative. NMF was shown to be useful in a task of clustering (especially document clustering), but in some cases NMF produces the results inappropriate to the clustering problems. In this paper, we present an algorithm for orthogonal nonnegative matrix factorization, where an orthogonality constraint is imposed on the nonnegative decomposition of a term-document matrix. The result of orthogonal NMF can be clearly interpreted for the clustering problems, and also the performance of clustering is usually better than that of the NMF. We develop multiplicative updates directly from true gradient on Stiefel manifold, whereas existing algorithms consider additive orthogonality constraints. Experiments on several different document data sets show our orthogonal NMF algorithms perform better in a task of clustering, compared to the standard NMF and an existing orthogonal NMF.

A Probabilistic Tensor Factorization approach for Missing Data Inference in Mobile Crowd-Sensing

  • Akter, Shathee;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권3호
    • /
    • pp.63-72
    • /
    • 2021
  • Mobile crowd-sensing (MCS) is a promising sensing paradigm that leverages mobile users with smart devices to perform large-scale sensing tasks in order to provide services to specific applications in various domains. However, MCS sensing tasks may not always be successfully completed or timely completed for various reasons, such as accidentally leaving the tasks incomplete by the users, asynchronous transmission, or connection errors. This results in missing sensing data at specific locations and times, which can degrade the performance of the applications and lead to serious casualties. Therefore, in this paper, we propose a missing data inference approach, called missing data approximation with probabilistic tensor factorization (MDI-PTF), to approximate the missing values as closely as possible to the actual values while taking asynchronous data transmission time and different sensing locations of the mobile users into account. The proposed method first normalizes the data to limit the range of the possible values. Next, a probabilistic model of tensor factorization is formulated, and finally, the data are approximated using the gradient descent method. The performance of the proposed algorithm is verified by conducting simulations under various situations using different datasets.

Dual graph-regularized Constrained Nonnegative Matrix Factorization for Image Clustering

  • Sun, Jing;Cai, Xibiao;Sun, Fuming;Hong, Richang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권5호
    • /
    • pp.2607-2627
    • /
    • 2017
  • Nonnegative matrix factorization (NMF) has received considerable attention due to its effectiveness of reducing high dimensional data and importance of producing a parts-based image representation. Most of existing NMF variants attempt to address the assertion that the observed data distribute on a nonlinear low-dimensional manifold. However, recent research results showed that not only the observed data but also the features lie on the low-dimensional manifolds. In addition, a few hard priori label information is available and thus helps to uncover the intrinsic geometrical and discriminative structures of the data space. Motivated by the two aspects above mentioned, we propose a novel algorithm to enhance the effectiveness of image representation, called Dual graph-regularized Constrained Nonnegative Matrix Factorization (DCNMF). The underlying philosophy of the proposed method is that it not only considers the geometric structures of the data manifold and the feature manifold simultaneously, but also mines valuable information from a few known labeled examples. These schemes will improve the performance of image representation and thus enhance the effectiveness of image classification. Extensive experiments on common benchmarks demonstrated that DCNMF has its superiority in image classification compared with state-of-the-art methods.

Robust Non-negative Matrix Factorization with β-Divergence for Speech Separation

  • Li, Yinan;Zhang, Xiongwei;Sun, Meng
    • ETRI Journal
    • /
    • 제39권1호
    • /
    • pp.21-29
    • /
    • 2017
  • This paper addresses the problem of unsupervised speech separation based on robust non-negative matrix factorization (RNMF) with ${\beta}$-divergence, when neither speech nor noise training data is available beforehand. We propose a robust version of non-negative matrix factorization, inspired by the recently developed sparse and low-rank decomposition, in which the data matrix is decomposed into the sum of a low-rank matrix and a sparse matrix. Efficient multiplicative update rules to minimize the ${\beta}$-divergence-based cost function are derived. A convolutional extension of the proposed algorithm is also proposed, which considers the time dependency of the non-negative noise bases. Experimental speech separation results show that the proposed convolutional RNMF successfully separates the repeating time-varying spectral structures from the magnitude spectrum of the mixture, and does so without any prior training.