스트림 데이터는 끊임없이 고속으로 생성되는 데이터로써 최근 이러한 데이터를 분석하여 부가가치를 얻고자 하는 노력이 활발히 진행 중 이다. 본 연구에서는 스트림 데이터의 다차원적 분석을 위해 큐브를 고속으로 계산하는 방법을 제안한다. 스트림 데이터는 비즈니스 데이터와는 달리 정렬되지 않은 채로 도착하며, 데이터의 끝에 도달하지 않은 상태에서는 집계 결과를 낼 수 없어서, 고속으로 집계하는 과정에서 저장 공간의 낭비를 심하게 초래한다. 또한 큐브에 속한 집계 테이블들을 모두 생성하는 것은 시간/공간 측면에서 비효율적이라는 점이 지적되고 있다. 이러한 문제를 해결하기 위해 본 연구에서는 기존 연구들과 마찬가지로 큐브에 포함시킬 집계 테이블들을 사용자가 미리 정하도록 하였고, 정렬되지 않은 스트림 데이터를 고속으로 집계하는 과정에서 배열과 AVL 트리들로 구성된 자료구조를 집계 테이블의 임시 저장소로 사용하였다. 제안한 알고리즘은 생성하려는 큐브가 메모리에 상주할 수 없을 정도로 큰 경우에도 집계 연산을 수행할 수 있다. 이론적 분석과 성능 평가를 통해 제안한 큐브 계산 알고리즘이 실용적임을 입증하였다.
ROLAP(Relational Online Analytical Processing)은 다차원적 데이타 분석을 위한 제반 기술로써, 전사적 데이타 웨어하우스로부터 고부가가치를 창출하는데 필수적인 기술이다. 질의처리 성능을 높이기 위해서 대부분의 ROLAP 시스템들은 집계 테이블들을 미리 계산해 둔다. 이를 큐브 생성이라고 하며, 이 과정에서 기존의 방법들은 데이타를 여러 차례 정렬해야 하고 이는 큐브 생성의 성능을 저하시키는 큰 요인이다. (1)은 MOLAP 큐브 생성 알고리즘을 통해 간접적으로 ROLAP 큐브를 생성하는 것이 훨씬 빠르다는 것을 보였다. 본 연구에서도 MOLAP 큐브 생성 알고리즘을 사용한 신속하고 확장적인 ROLAP 큐브 생성 알고리즘을 제시하였다. 분석할 입력 사실 테이블을 적절하게 조각내어 메모리 효율을 높였고, 집계 테이블들을 최소 부모 집계 테이블로부터 생성하도록 하여 큐브 생성 시간을 단축하였다. 제안한 방법의 효율성은 실험을 통해 검증하였다.
Biomechanical behavior of the human femur is very important in various clinical situations. In this study, the data of FE models based on DICOM file exported from Computed tomography(CT). We generated FE models(voxel model, tetra model) of human femur using CT slide image. We compared them with Yon Mises stress results derived from finite element analysis(FEA). Comparing the two models, we found a correlation of them. As a result, the tetra model based proposed marching cube algorithm is a valid and accurate method to predict parameters of the complex biomechanical behavior of human femur.
의사결정 지원시스템에서 작업자들은 대량의 데이터 집계 연산을 요구하며, 데이터에 대한 정확한 응답보다는 경향 분석에 더 많은 관심을 가진다. 그러므로 정확한 응답보다 빠른 근사 질의응답을 제공하는 것이 필요하며 그것을 실현하기 위한 근사질의 응답 기법의 연구가 필요하다. 따라서 본 논문에서는 기존 연구들의 단점을 보안하고 근사 응답의 정확성을 향상시킬 수 있는 Fuzzy C-Means (FCM) 클러스터링 기반 Adaptive Neuro-Fuzzy Inference System (ANFIS)을 이용한 근사 질의응답 기법을 제안한다. FCM-ANFIS을 이용한 근사 질의응답 기법은 다차원 데이터의 지식 표현 모델을 생성함으로써 거대한 다차원 데이터 큐브에 직접적인 접근 없이 집계 질의 수행이 가능하다. 비교실험을 통하여 제안된 기법이 기존의 NMF 기법보다 근사 질의응답의 정확성이 향상되었음을 확인한다.
A lot of GIS DB in Korea is distributed and integration for decision making is difficult. Therefore, the SDW is needed to improve the problems and enhance efficiency. The SDW is used for making decisions about various problems by integrating scattered spatial information. This study analyzes business activity of a local government and plan the data cube to implement spatial OLAP for an efficient decision making.
주어진 셀이나 조직에 발현된 단백질 프로파일의 구조적인 분석을 다루는 단백질체학(Proteomics) 연구에 있어서, 질병에 대한 마커 단백질(marker proteins)을 도출(identification)하는 것은 핵심 논점 중 하나이다. 수십 개의 샘플로부터 추출한 셀이나 조직 내에는 수많은 단백질이 포함되어 있으며, 존재하는 단백질의 질병에 의한 발현량(expression level) 변화 및 임상 특성에 의한 영향을 분석하기 위해서 데이터베이스와 데이터 마이닝 기술의 활용이 효과적이다. 본 논문에서는 질병 일 임상 특성에 따른 단백질의 발현량 변화를 분석하기 위한 OLAP 데이터 큐브(Data cube)의 응용 방법과 단백질 데이터의 분석에 적합한 척도(measure)를 제안하고, 유효성을 보인다.
큐브위성은 기존의 인공위성과 마찬가지로 지구 관측뿐만 아니라, 우주탐사 분야에도 폭넓게 활용되는 인공위성 플랫폼이다. 또한 우주 공간물리현상을 관측하기 위한 자기장관측 임무에서도 다양한 형태로 제작되어 활용되고 있다. 자기장 측정의 경우, 일반적으로 위성의 자기 교란을 최소화하기 위해 자기장측정기가 위성 몸체로부터 멀리 떨어져 있다. 그러나 큐브위성과 같은 작은 위성의 경우 공간적인 제약으로 인해 자기장 센서의 위치 설정이 제한적이다. 이에 이 논문에서는 큐브위성에서 생성된 자기장 간섭을 추정하여 자기장 측정의 신뢰성에 얼마나 영향을 줄 수 있는지 분석하였다. 주요 잡음원으로는 상대적으로 높은 소비전력을 가진 반작용 휠과 자기 토크로드를 대상으로 조사하였다. 이러한 부품의 자기 쌍극자 모멘트는 제조업체의 데이터 시트에 제공된 정보를 사용하였다. 외부 자기장이 없는 공간에서 3 U 큐브위성 중간에 위치한 자기 토크로드의 잔류 모멘트의 영향은 위성의 몸체 최 외곽 끝에서 약 36,000 nT까지 나타날 수 있음을 확인했다. 또한, 1 nT 미만의 정확한 자기장 측정의 임무라면, 자력계는 위성 본체에서 약 0.6 m 반경 거리 외곽에 있어야 함을 알 수 있었다. 이러한 분석 방법은 자기장 측정을 수행하기 위해 CubeSat을 설계할 때 자기 청결도 분석의 중요한 역할이 될 것으로 기대한다.
재난 재해 발생 시, 정부의 위기 대응방식에 대한 사후 평가는 향후 유사한 위기 상황이 발생할 경우를 대비하고 국가의 장기적인 위기관리의 초석이 되는 필수적인 단계이다. 본 논문에서는 국내에서 발생한 구제역에 관하여 정부에서 어떠한 대응 전략을 펼쳤는지를 언론에 보도된 기사 내용을 통해 분석한 연구로써, 먼저 온라인 뉴스 기사로부터 구제역에 관한 키워드들을 추출하여 데이터 큐브를 구성한 후, OLAP 연산과 연관규칙 분석을 수행함으로써 시간 축에 따른 정부의 위기상황 대응행동 및 그에 따른 사회적 파급 효과들을 분석한다. 구제역이 가장 심각했던 2010년 11월부터 2011년 12월까지 국내에서 발생한 구제역에 관한 정부의 위기 상황 대응 방법을 사례분석을 통해 분석하였다.
Engineering changes are indispensable engineering and management activities for manufactures to develop competitive products and to maintain consistency of its product data. Analysis of engineering changes provides a core functionality to support decision makings for engineering change management. This study aims to develop a method for analysis of engineering changes based on On-Line Analytical Processing (OLAP), a proven database analysis technology that has been applied to various business areas. This approach automates data processing for engineering change analysis from product databases that follow an international standard for product data management (PDM), and enables analysts to analyze various aspects of engineering changes with its OLAP operations. The study consists of modeling a standard PDM database and a multidimensional data model for engineering change analysis, implementing the standard and multidimensional models with PDM and data cube systems and applying the implemented data cube to core functions of engineering change management, the evaluation and propagation of engineering changes.
데이터에 내재되어 있는 특이 패턴을 찾고자 데이터 분석을 할 때에 보통 다차원적인 데이터 집계를 하는데, 이때에 표준 SQL 쿼리를 사용해도 좋지만 쿼리가 아주 복잡해진다는 단점이 생기게 된다. 쿼리가 복잡해지면 표준 테이블을 여러 번 참조해야 되고 결과적으로 쿼리의 성능이 저하된다는 뜻이다. OLAP 쿼리는 복잡한 것이 대다수이기 때문에 SQL 쿼리를 대신할 새로운 집계용 연산자인 데이터 큐브를 간단히 불러 큐브를 만들 필요가 생기는 것이다. 집계를 하고, 부분 합을 구하는 것과 같은 OLAP 업무를 지원해 주는 것이 데이터 큐브이다. 이러한 데이터 큐브를 작성하는데 관련된 집계함수에는 여러 가지가 있는데, 이를 분배적 함수, 대수적 함수 그리고 전체관적 함수의 3가지로 분류할 수 있다. 이 중, SUM, COUNT, MAX, MIN과 같은 분배적 함수는 데이터 큐브를 작성하는 데에 직접사용 할 수 있고, AVG와 같은 대수적 함수는 매개함수를 활용하면 사용가능 하다고 알려져 있다. 즉, AVG 자체는 분배적 함수가 아니지만, (SUM, COUNT)와 같은 매개함수로 분배적 함수가되기 때문에 매개함수를 이용하여 구하면 된다는 뜻이다. 그러나 본 연구에서는 (SUM, COUNT)와 같은 매개함수를 통해 AVG를 구하는 것이 OLAP 큐브 작성에 적용시킬 수 없다는 사실을 확인했으며, 결과적으로 이 매개함수를 활용하면 잘못된 결론에 다다르고 그릇된 의사결정을 하게 된다는 사실을 확인하게 되었다. 따라서 본 연구에서는 집계함수 AVG를 OLAP 큐브에 적용시켰을 때의 여러 문제점을 밝혀내고 또한 이들 문제점을 해결할 방안을 찾고자 하는 데에 목적을 두고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.