최근 시공간 데이타에 대한 OLAP연산 효율을 증가시키기 위한 여러 가지 연구들이 행하여지고 있다. 이들 연구의 대부분은 다중트리구조에 기반하고 있다. 다중트리구조는 공간차원을 색인하기 위한 하나의 R-tree와 시간차원을 색인하기 위한 다수의 B-tree로 이루어져 있다. 하지만, 이러한 다중트리구조는 높은 유지비용과 불충분한 질의 처리 효율로 인해 현실적으로 시공간 OLAP연산에 적용하기에는 어려운 점이 있다. 본 논문에서는 이러한 문제를 근본적으로 개선하기 위한 접근 방법으로서 힐버트큐브(Hilbert Cube, H-Cube)를 제안하고 있다. H-Cube는 집계질의(aggregation query) 처리 효율을 높이기 위해 힐버트 곡선을 이용하여 셀들에게 완전순서(total-order)를 부여하고 있으며, 아울러 전통적인 누적합(prefix-sum) 기법을 함께 적용하고 있다. H-Cube는 적응적이며, 완전순서화되어 있으며, 또한 누적합을 이용한 셀 기반의 색인구조이다. 본 논문에서는 H-Cube의 성능 평가를 위해서 다양한 실험을 하였으며, 그 결과로서 유지비용과 질의 처리 효율성면 모두에서 다중트리구조보다 높은 성능 향상이 있음을 보인다.
We present a code which identifies individual clouds in crowded region using IMFORT interface within Image Reduction and Analysis Facility (IRAF). We define a cloud as an object composed of all pixels in longitude, latitude, and velocity that are simply connected and that lie above some threshold temperature. The code searches the whole pixels of the data cube in efficient way to isolate individual clouds. Along with identification of clouds it is designed to estimate their mean values of longitudes, latitudes, and velocities. In addition, a function of generating individual images (or cube data) of identified clouds is added up. We also present identified individual clouds using a $^{12}CO$ survey data cube of Galactic Anticenter Region (Lee et al. 1997) as a test example. We used a threshold temperature of $5\sigma$ rms noise level of the data With a higher threshold temperature, we isolated subclouds of a huge cloud identified originally. As the most important parameter to identify clouds is the threshold value, its effect to the size and velocity dispersion is discussed rigorously.
Dwarf is a highly compressed structure, which compresses the cube by eliminating the semantic redundancies while computing a data cube. Although it has high compression ratio, Dwarf is slower in querying and more difficult in updating due to its structure characteristics. We all know that the original intention of data cube is to speed up the query performance, so we propose two novel clustering methods for query optimization: the recursion clustering method which clusters the nodes in a recursive manner to speed up point queries and the hierarchical clustering method which clusters the nodes of the same dimension to speed up range queries. To facilitate the implementation, we design a partition strategy and a logical clustering mechanism. Experimental results show our methods can effectively improve the query performance on data cubes, and the recursion clustering method is suitable for both point queries and range queries.
Decision tree algorithms are used extensively for data mining in many domains such as retail target marketing, fraud dection, data reduction and variable screening, etc. CHAID(Chi-square Automatic Interaction Detector), is an exploratory method used to study the relationship between a dependent variable and a series of predictor variables. In this paper we propose and CHAID algorithm by cube-based sampling and explore CHAID algorithm in view of accuracy and speed by the number of variables.
본 논문은 스테레오 정합(stereo matching)과 마칭큐브(marching cube)알고리즘을 통합하는 효과적인 알고리즘을 제안한다. 여러 각도에서 획득한 영상에 대해 스테레오 정합 기술을 적용하여 3차원 형상 데이타를 획득하고 카메라 외부 파라미터를 이용하여 결합하였다. 결합된 데이타를 영상 색인을 이용하여 메쉬로 재구성한 다음 각 점에 해당하는 법선벡터를 획득하고 메쉬 평탄화(mesh smooth)의 과정을 거쳐서 데이타를 부드럽게 처리하였다. 본 논문은 3차원 메쉬 재구성에 대한 일련의 과정 및 기술을 서술하였으며, 기존의 마칭큐브 알고리즘에서 생기는 3차원 데이타의 불안정에 대한 문제를 중간 등위면(iso-surface) 알고리즘을 제안하여 개선하였다.
International Journal of Aerospace System Engineering
/
제1권1호
/
pp.34-43
/
2014
The STEP Cube Lab (Cube Laboratory for Space Technology Experimental Projects) is a 1U cube satellite developed by the Space Technology Synthesis Laboratory of Chosun University to be launched in 2015. Its mission objective is twofold: to determine which of the fundamental space technologies researched at domestic universities, will be potential candidates for use in future space missions and to verify the effectiveness of the technologies by investigating mission data obtained from on-orbit operation of the cube satellite. In this paper, a structural design concept based on the 1U standard to achieve the mission objective is introduced. The validity of the design has been demonstrated by quasi-static analysis and modal analysis. In addition, a non-explosive separation device triggered by burn wire heating, which is one of the main mission payloads is introduced.
최근 많은 응용 분야에서 대규모 데이터에 대해 온라인 다차원 분석(OLAP)을 사용하고 있다. 다차원 데이터 큐브는 OLAP 분석에서 핵심 도구로 여긴다. 본 논문에서는 맵리듀스 분산 병렬 처리를 이용하여 효율적으로 데이터 큐브를 계산하는 방법을 연구하고자 한다. 이를 위해, 맵리듀스 프레임워크에서 데이터 큐브 계산 방법으로 잘 알려진 PipeSort 알고리즘을 구현하는 효율적인 방법에 대해서 살펴본다. PipeSort는 데이터 큐브의 한 큐보이드에서 동일한 정렬 순서를 갖는 여러 큐보이드를 한 파이프라인으로 한꺼번에 계산하는 효율적인 방식이다. 이 논문에서는 맵리듀스 프레임워크에서 PipeSort의 파이프라인을 구현한 네 가지 방법을 20대의 서버에서 수행하였다. 실험 결과를 보면, 고차원 데이터에 대해서는 PipeMap-NoReduce 알고리즘이 우수한 성능을 보였으며, 저차원 데이터에 대해서는 Post-Pipe 알고리즘이 더 우수함을 보였다.
영역 질의는 의사결정에서 자주 사용되는 중요한 질의이다. 그러나, 영역 질의를 처리하기 위해서는 많은 점(cell)들이 검색되어야 하기 때문에 효율적인 처리가 쉽지 않았다. 이러한 문제를 해결하기 위해서 영역의 크기에 관계없이 일정한 시간에 영역 질의를 처리할 수 있는 전위-합 큐브(prefix-sum cube)가 제안되었다. 그러나, 전위-합 큐브는 영역 질의의 처리는 효율적으로 할 수 있지만, 그것을 저장하기 위해 매우 큰 저장 공간이 필요하다는 문제를 갖고 있다. 본 논문에서는 전위-합 큐브의 이 문제를 해결하기 위해서 손실 없이 전위-합 큐브를 압축하는 중첩된-서브큐브 압축 방법을 제안한다. 중첩된-서브큐브 압축 방법은 전위-합 큐브의 압축을 위해서 만들어진 것으로 압축된 상태에서 저장된 값을 검색할 수 있는 매우 유용한 특징이 있다. 이 특징으로 인해, 질의 처리 시 압축된 전위-합 큐브를 그대로 사용할 수 있다. 압축된 전위-합 큐브를 사용하면, 동일한 크기의 버퍼에 전위-합 큐브의 더 많은 부분을 저장할 수 있다. 이것은 질의 처리 시 디스크 입출력의 횟수를 획기적으로 감소시킨다.
큐브위성은 저비용, 짧은 개발 기간, 임무 지향적 성능 고도화, 군집 및 편대 비행을 통한 다양한 임무 수행이 가능하여 지구관측, 우주탐사, 우주 과학기술 검증 등 다양한 분야에서 활용성이 높다. 최근 큐브위성의 활용성이 높아지고 응용 분야가 확대됨에 따라 대용량 데이터의 고속 전송에 대한 요구가 전례 없이 증가하고 있는 추세이다. 레이저 기반 자유공간 광통신 기술은 기존 전파통신 방식 대비 고속으로 대용량 데이터 전송이 가능하고, 비면허대역 스펙트럼 사용, 저비용, 저전력, 높은 보안 특성 및 소형 통신 플랫폼의 활용 가능성 등 다양한 장점이 있어 큐브위성 임무 지원을 위한 고성능 통신 수단으로 적합하다. 본 논문에서는 큐브위성 기반 우주 레이저 통신 핵심 구성요소 및 특징을 살펴보고, 최근 연구동향, 대표 기술개발 사례 그리고 실증 결과와 함께 향후 개발 계획 등에 대해 살펴보고자 한다.
본 연구는 System Dynamics를 이용하여 선사 컨테이너 인벤토리의 수요를 장비 Type/size별 예측, Port별 예측, Weekly 예측을 통해 보다 정교한 예측모델을 구축하는 것을 연구의 목적으로 하였다. 예측은 중국의 상하이항과 얀티안항을 대상으로 하였다. 컨테이너 인벤토리는 수요가 많고 유효한 데이터를 산출할 수 있는 Dry 컨테이너 20', 40', High cube 40'으로 한정하였다. 시뮬레이션 기간은 2011년-2017년이며, 선사에서 실제 예측하는 단위인 Weekly 데이터를 활용하였다. 모델의 정확도 검증을 위해 절대비율 평균오차(MAPE)를 적용한 결과 상하이 Dry 40' 수요, 상하이 Dry High cube 40' 수요, 상하이 Dry 20' 공급, 상하이 Dry 40' 공급, 상하이 Dry High cube 40' 공급 예측 모델은 $$0%{\leq_-}MAPE{\leq_-}10%$$에 속하는 매우 정확한 예측 모델로 검증되었다. 그 외의 상하이 수요 공급 예측 모델은 $$10%{\leq_-}MAPE{\leq_-}20%$$에 속해 비교적 정확한 예측 모델로 검증되었다. 얀티안 Dry High cube 40' 수요, Dry 20' 공급 예측 모델은 $$0%{\leq_-}MAPE{\leq_-}10%$$에 속해 매우 정확한 예측 모델이며, 그 외의 얀티안 수요 공급 예측 모델은 $$10%{\leq_-}MAPE{\leq_-}20%$$에 속해 비교적 정확한 예측 모델로 검증되었다. 본 연구의 예측 모델은 실제 선사에서 관리중인 데이터와 비교해도 높은 정확도를 갖는 것으로 나타났다. 본 연구에서 제시된 모델은 지역 수요예측 담당자 및 본부의 인벤토리 컨트롤 담당자가 참고자료로 유용하게 사용 가능하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.