• Title/Summary/Keyword: data correlation

Search Result 19,808, Processing Time 0.046 seconds

Spatial Correlations of Brain fMRI data

  • Choi Kyungmee
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.241-252
    • /
    • 2005
  • In this study we suggest that the spatial correlation structure of the brain fMRI data be used to characterize the functional connectivity of the brain. For some concussion and recovery data, we examine how the correlation structure changes from one step to another in the data analyses, which will allow us to see the effect of each analysis to the spatial correlation or the functional connectivity of the brain. This will lead us to spot the processes which cause significant changes in the spatial correlation structure of the brain. We discuss whether or not we can decompose correlation matrices in terms of its causes of variations in the data.

Collective Prediction exploiting Spatio Temporal correlation (CoPeST) for energy efficient wireless sensor networks

  • ARUNRAJA, Muruganantham;MALATHI, Veluchamy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2488-2511
    • /
    • 2015
  • Data redundancy has high impact on Wireless Sensor Network's (WSN) performance and reliability. Spatial and temporal similarity is an inherent property of sensory data. By reducing this spatio-temporal data redundancy, substantial amount of nodal energy and bandwidth can be conserved. Most of the data gathering approaches use either temporal correlation or spatial correlation to minimize data redundancy. In Collective Prediction exploiting Spatio Temporal correlation (CoPeST), we exploit both the spatial and temporal correlation between sensory data. In the proposed work, the spatial redundancy of sensor data is reduced by similarity based sub clustering, where closely correlated sensor nodes are represented by a single representative node. The temporal redundancy is reduced by model based prediction approach, where only a subset of sensor data is transmitted and the rest is predicted. The proposed work reduces substantial amount of energy expensive communication, while maintaining the data within user define error threshold. Being a distributed approach, the proposed work is highly scalable. The work achieves up to 65% data reduction in a periodical data gathering system with an error tolerance of 0.6℃ on collected data.

Principal Component Analysis Based Two-Dimensional (PCA-2D) Correlation Spectroscopy: PCA Denoising for 2D Correlation Spectroscopy

  • Jung, Young-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1345-1350
    • /
    • 2003
  • Principal component analysis based two-dimensional (PCA-2D) correlation analysis is applied to FTIR spectra of polystyrene/methyl ethyl ketone/toluene solution mixture during the solvent evaporation. Substantial amount of artificial noise were added to the experimental data to demonstrate the practical noise-suppressing benefit of PCA-2D technique. 2D correlation analysis of the reconstructed data matrix from PCA loading vectors and scores successfully extracted only the most important features of synchronicity and asynchronicity without interference from noise or insignificant minor components. 2D correlation spectra constructed with only one principal component yield strictly synchronous response with no discernible a asynchronous features, while those involving at least two or more principal components generated meaningful asynchronous 2D correlation spectra. Deliberate manipulation of the rank of the reconstructed data matrix, by choosing the appropriate number and type of PCs, yields potentially more refined 2D correlation spectra.

On the Effect of Significance of Correlation Coefficient for Recommender System

  • Lee, Hee-Choon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1129-1139
    • /
    • 2006
  • Pearson's correlation coefficient and vector similarity are generally applied to The users' similarity weight of user based recommender system. This study is needed to find that the correlation coefficient of similarity weight is effected by the number of pair response and significance probability. From the classified correlation coefficient by the significance probability test on the correlation coefficient and pair of response, the change of MAE is studied by comparing the predicted precision of the two. The results are experimentally related with the change of MAE from the significant correlation coefficient and the number of pair response.

  • PDF

A Study on Selecting Principle Component Variables Using Adaptive Correlation (적응적 상관도를 이용한 주성분 변수 선정에 관한 연구)

  • Ko, Myung-Sook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.79-84
    • /
    • 2021
  • A feature extraction method capable of reflecting features well while mainaining the properties of data is required in order to process high-dimensional data. The principal component analysis method that converts high-level data into low-dimensional data and express high-dimensional data with fewer variables than the original data is a representative method for feature extraction of data. In this study, we propose a principal component analysis method based on adaptive correlation when selecting principal component variables in principal component analysis for data feature extraction when the data is high-dimensional. The proposed method analyzes the principal components of the data by adaptively reflecting the correlation based on the correlation between the input data. I want to exclude them from the candidate list. It is intended to analyze the principal component hierarchy by the eigen-vector coefficient value, to prevent the selection of the principal component with a low hierarchy, and to minimize the occurrence of data duplication inducing data bias through correlation analysis. Through this, we propose a method of selecting a well-presented principal component variable that represents the characteristics of actual data by reducing the influence of data bias when selecting the principal component variable.

Estimation of high-dimensional sparse cross correlation matrix

  • Yin, Cao;Kwangok, Seo;Soohyun, Ahn;Johan, Lim
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.6
    • /
    • pp.655-664
    • /
    • 2022
  • On the motivation by an integrative study of multi-omics data, we are interested in estimating the structure of the sparse cross correlation matrix of two high-dimensional random vectors. We rewrite the problem as a multiple testing problem and propose a new method to estimate the sparse structure of the cross correlation matrix. To do so, we test the correlation coefficients simultaneously and threshold the correlation coefficients by controlling FRD at a predetermined level α. Further, we apply the proposed method and an alternative adaptive thresholding procedure by Cai and Liu (2016) to the integrative analysis of the protein expression data (X) and the mRNA expression data (Y) in TCGA breast cancer cohort. By varying the FDR level α, we show that the new procedure is consistently more efficient in estimating the sparse structure of cross correlation matrix than the alternative one.

The Correlation Factors on the Analysis of Demand Factors for Apartments (주택수요 예측인자 영향도 분석에 의한 상관인자선정)

  • Yang Seung-Won;Park Keun-Joon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.1 s.23
    • /
    • pp.80-88
    • /
    • 2005
  • This research describes an interactive process of analysing the demand factors for apartment on Cheonan area Using subjective statistical data for demand factor the process are categorized into main factors explained for the sensitiveness of correlation coefficient. This investigation is based on an analysis of the work of time series data One of the propose of this research is determining the correlation factors that can be effectively used in the model of forcasting. The results show a significant correlation coefficient on correlation matrix to iud the optimum correlation factors. The paper thus shows how to gain greater influntial factors on principal component analysis Consequently, this paper provides useful information about correlationship, but has limit of regional boundary for effectiveness.

The Analysis of Priority Output Queuing Model by Short Bus Contention Method (Short Bus contention 방식의 Priority Output Queuing Model의 분석)

  • Jeong, Yong-Ju
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.2
    • /
    • pp.459-466
    • /
    • 1999
  • I broadband ISDN every packet will show different result if it would be processed according to its usage by the server. That is, normal data won't show big differences if they would be processed at normal speed. But it will improve the quality of service to process some kinds of data - for example real time video or voice type data or some data for a bid to by something through the internet - more fast than the normal type data. solution for this problem was suggested - priority packets. But the analyses of them are under way. Son in this paper a switching system for an output queuing model in a single server was assumed and some packets were given priorities and analysed. And correlation, simulating real life situation, was given too. These packets were analysed through three cases, first packets having no correlation, second packets having only correlation and finally packets having priority three cases, first packets having no correlation, second packets having only correlation and finally packets having priority and correlation. The result showed that correlation doesn't affect the mean delay time and the high priority packets have improved mean delay time regardless of the arrival rate. Those packets were assumed to be fixed-sized like ATM fixed-sized cell and the contention strategy was assumed to be short bus contention method for the output queue, and the mean delay length and the maximum 버퍼 length not to lose any packets were analysed.

  • PDF

Correlation Analysis of Atmospheric Pollutants and Meteorological Factors Based on Environmental Big Data

  • Chao, Chen;Min, Byung-Won
    • International Journal of Contents
    • /
    • v.18 no.1
    • /
    • pp.17-26
    • /
    • 2022
  • With the acceleration of urbanization and industrialization, air pollution has become increasingly serious, and the pollution control situation is not optimistic. Climate change has become a major global challenge faced by mankind. To actively respond to climate change, China has proposed carbon peak and carbon neutral goals. However, atmospheric pollutants and meteorological factors that affect air quality are complex and changeable, and the complex relationship and correlation between them must be further clarified. This paper uses China's 2013-2018 high-resolution air pollution reanalysis open data set, as well as statistical methods of the Pearson Correlation Coefficient (PCC) to calculate and visualize the design and analysis of environmental monitoring big data, which is intuitive and it quickly demonstrated the correlation between pollutants and meteorological factors in the temporal and spatial sequence, and provided convenience for environmental management departments to use air quality routine monitoring data to enable dynamic decision-making, and promote global climate governance. The experimental results show that, apart from ozone, which is negatively correlated, the other pollutants are positively correlated; meteorological factors have a greater impact on pollutants, temperature and pollutants are negatively correlated, air pressure is positively correlated, and the correlation between humidity is insignificant. The wind speed has a significant negative correlation with the six pollutants, which has a greater impact on the diffusion of pollutants.

An Overload Detecting Method for an Excavator Based on the Correlation Function (상관함수 기반 굴삭기용 과부하 검출 기법)

  • Yu, Chang-Ho;Ko, Nam-Kon;Choi, Jae-Weon;Seo, Young-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.703-710
    • /
    • 2010
  • In this paper, an overload detecting algorithm for an excavator is presented. The proposed overload detecting algorithm is based on the time series analysis especially correlation function. The main purpose of this paper is to prevent damage or crack from the fatigue loaded on an excavator in advance. Generally, the larger data, the longer processing time, and the amount of the data used in this paper are also large, especially every sampling period, 1600 data are gathered and calculated. So this paper focuses on minimizing the number of required sensors by using the correlation function. From the cross correlation function, similar pattern sensors are eliminated and dissimilar pattern sensors are considered, and from the auto correlation function, the overload can be detected. To prove the efficiency of the proposed overload detecting algorithm, this paper shows the computer simulation results.