• Title/Summary/Keyword: data complexity

Search Result 2,414, Processing Time 0.034 seconds

Brief Observation on Arbitration Agreement and Arbitral Award - Focusing on Construction Disputes - (중재합의와 중재판정에 관한 소고 -건설분쟁을 중심으로-)

  • Cho Dae-Yun
    • Journal of Arbitration Studies
    • /
    • v.14 no.1
    • /
    • pp.273-314
    • /
    • 2004
  • There is a belief in the construction industry that the traditional court system may not be an ideal forum to effectively and efficiently resolve construction disputes due to the protracted proceedings and the three tier appeal system resulting in a long delay in the final and conclusive settlement of the dispute, relatively high costs involved, the lack of requisite knowledge and experience in the relevant industry, etc. Hence, they assert that certain alternative dispute resolution ('ADR') methods, such as mediation, conciliation, arbitration or a new system for dispute settlement in the form of any combination thereof should be developed and employed for construction disputes so as to resolve them more promptly and efficiently to the satisfaction of all the disputants concerned. This paper discusses certain merits of such assertions and the need for additional considerations for effective resolution of the construction disputes in light of the complexity of the case, importance of expert witnesses, parties' relationship and non-level playing field of the construction industry and so on. At the same time, however, given the inherent nature of disputes rendering the parties involved in an adversarial position, it would rather be difficult, if not practically impossible, to satisfy all the parties concerned in the dispute. Accordingly, in this study, it is also purported to address the demerits of such assertions by studying the situation from a more balanced perspective, in particular, in relation to the operation of such ADRs. In fact, most of such ADRs as stipulated by special acts, such as the Construction Industry Basic Act of Korea, in the form of mediation or conciliation, have failed to get support from the industry, and as a result, such ADRs are seldom used in practice. Tn contrast, the court system has been greatly improved by implementing a new concentrated review system and establishing several tribunals designed to specialize in the review and resolution of specific types of disputes, including the construction disputes. These improvements of the court system have been warmly received by the industry. Arbitration is another forum for settlement of construction disputes, which has grown and is expected to grow as the most effective ADR with the support from the construction industry. In this regard, the Korean Commercial Arbitration Board ('KCAB') has established a set of internal rules end procedures in operation to efficiently handle construction disputes. Considering the foregoing, this paper addresses the most important elements of the arbitration, i.e., arbitration agreement and arbitral award, primarily focusing on the domestic arbitrations before the KCAB. However, since this parer is prepared for presentation at the construction disputes seminar for the public audience, it is not intended for academic purposes, nor does it delve into any specific acadcmic issues. Likewise, although this paper addresses certain controversial issues by way of introduction, it mainly purports to facilitate the understanding of the general public, including the prospective arbitrators on the KCAB roster without the relevant legal education and background, concerning the importance of the integrity of the arbitration agreement and the arbitral award. In sum, what is purported in this study is simply to note that there are still many outstanding issues with mediation, conciliation and arbitration, as a matter of system, institutional operation or otherwise, for further study and consideration so as to enhance them as effective means for settlement of construction disputes, in replacement of or in conjunction with the court proceeding. For this purpose, it is essential for all the relevant parties, including lawyers, engineers, owners, contractors and social activists aiming to protect consumers' and subcontractors' interests, to conduct joint efforts to study the complicated nature of construction works and to develop effective means for examination and handling of the disputes of a technical nature, including the accumulation of the relevant industrial data. Based on the foregoing, the parties may be in a better position to select the appropriate dispute resolution mechanism, a court proceeding or in its stead, an effective ADR, considering the relevant factors of the subject construction works or the contract structure, such as the bargaining position of the parties, their financial status, confidentiality requirements, technical or commercial complexity of the case at hand, urgency for settlements, etc.

  • PDF

Influence of Smart Work on Job Satisfaction among Employees in the Financial Sector : The Mediating Role of Work-Life Balance (Smart Work가 금융권 종업원의 직무만족에 미치는 영향 : 워라밸의 매개효과 )

  • Lee, Sung-seop;Dong, Hak-lim
    • Journal of Venture Innovation
    • /
    • v.7 no.3
    • /
    • pp.25-43
    • /
    • 2024
  • The rapid advancement of the 4th Industrial Revolution and the ongoing effects of COVID-19 significantly accelerated the adoption of smart work practices, especially in the financial sector. This study aimed to empirically investigate the impact of smart work on job satisfaction among employees in this industry. Specifically, the study examined the effects of time flexibility and workplace flexibility (as quantitative elements of smart work) and work autonomy (as a qualitative element) on job satisfaction. Additionally, the study explored the impact of technostress factors, including techno-overload, techno-invasion, and techno-complexity. Using data from 250 valid survey responses collected from financial sector employees, the study employed structural equation modeling (SEM) with AMOS to analyze the relationships. The findings revealed that time flexibility and work autonomy positively influenced job satisfaction, with work autonomy being the most significant predictor. Conversely, techno-overload and techno-invasion negatively affected job satisfaction. However, workplace flexibility and techno-complexity did not show a significant relationship with job satisfaction, possibly due to the already established norms in the financial sector, where remote work and high-level technology usage were standard practices. A critical aspect of the study was the examination of work-life balance as a mediating factor. The analysis confirmed that work-life balance mediated the relationship between work autonomy, techno-overload, techno-invasion, and job satisfaction. This suggested that maintaining a balance between work and personal life was crucial for enhancing job satisfaction in smart work environments, particularly in the financial sector. Effective management of technostress was essential to preserving this balance and improving overall employee satisfaction. These findings contributed to the academic understanding of how smart work practices and technostress impacted job satisfaction. They offered practical insights for financial sector organizations seeking to optimize smart work environments by emphasizing the importance of work-life balance and carefully managing technostress factors.

A Control Method for designing Object Interactions in 3D Game (3차원 게임에서 객체들의 상호 작용을 디자인하기 위한 제어 기법)

  • 김기현;김상욱
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.3
    • /
    • pp.322-331
    • /
    • 2003
  • As the complexity of a 3D game is increased by various factors of the game scenario, it has a problem for controlling the interrelation of the game objects. Therefore, a game system has a necessity of the coordination of the responses of the game objects. Also, it is necessary to control the behaviors of animations of the game objects in terms of the game scenario. To produce realistic game simulations, a system has to include a structure for designing the interactions among the game objects. This paper presents a method that designs the dynamic control mechanism for the interaction of the game objects in the game scenario. For the method, we suggest a game agent system as a framework that is based on intelligent agents who can make decisions using specific rules. Game agent systems are used in order to manage environment data, to simulate the game objects, to control interactions among game objects, and to support visual authoring interface that ran define a various interrelations of the game objects. These techniques can process the autonomy level of the game objects and the associated collision avoidance method, etc. Also, it is possible to make the coherent decision-making ability of the game objects about a change of the scene. In this paper, the rule-based behavior control was designed to guide the simulation of the game objects. The rules are pre-defined by the user using visual interface for designing their interaction. The Agent State Decision Network, which is composed of the visual elements, is able to pass the information and infers the current state of the game objects. All of such methods can monitor and check a variation of motion state between game objects in real time. Finally, we present a validation of the control method together with a simple case-study example. In this paper, we design and implement the supervised classification systems for high resolution satellite images. The systems support various interfaces and statistical data of training samples so that we can select the most effective training data. In addition, the efficient extension of new classification algorithms and satellite image formats are applied easily through the modularized systems. The classifiers are considered the characteristics of spectral bands from the selected training data. They provide various supervised classification algorithms which include Parallelepiped, Minimum distance, Mahalanobis distance, Maximum likelihood and Fuzzy theory. We used IKONOS images for the input and verified the systems for the classification of high resolution satellite images.

An Implementation of Dynamic Gesture Recognizer Based on WPS and Data Glove (WPS와 장갑 장치 기반의 동적 제스처 인식기의 구현)

  • Kim, Jung-Hyun;Roh, Yong-Wan;Hong, Kwang-Seok
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.561-568
    • /
    • 2006
  • WPS(Wearable Personal Station) for next generation PC can define as a core terminal of 'Ubiquitous Computing' that include information processing and network function and overcome spatial limitation in acquisition of new information. As a way to acquire significant dynamic gesture data of user from haptic devices, traditional gesture recognizer based on desktop-PC using wire communication module has several restrictions such as conditionality on space, complexity between transmission mediums(cable elements), limitation of motion and incommodiousness on use. Accordingly, in this paper, in order to overcome these problems, we implement hand gesture recognition system using fuzzy algorithm and neural network for Post PC(the embedded-ubiquitous environment using blue-tooth module and WPS). Also, we propose most efficient and reasonable hand gesture recognition interface for Post PC through evaluation and analysis of performance about each gesture recognition system. The proposed gesture recognition system consists of three modules: 1) gesture input module that processes motion of dynamic hand to input data 2) Relational Database Management System(hereafter, RDBMS) module to segment significant gestures from input data and 3) 2 each different recognition modulo: fuzzy max-min and neural network recognition module to recognize significant gesture of continuous / dynamic gestures. Experimental result shows the average recognition rate of 98.8% in fuzzy min-nin module and 96.7% in neural network recognition module about significantly dynamic gestures.

A Hierarchical Cluster Tree Based Fast Searching Algorithm for Raman Spectroscopic Identification (계층 클러스터 트리 기반 라만 스펙트럼 식별 고속 검색 알고리즘)

  • Kim, Sun-Keum;Ko, Dae-Young;Park, Jun-Kyu;Park, Aa-Ron;Baek, Sung-June
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.562-569
    • /
    • 2019
  • Raman spectroscopy has been receiving increased attention as a standoff explosive detection technique. In addition, there is a growing need for a fast search method that can identify raman spectrum for measured chemical substances compared to known raman spectra in large database. By far the most simple and widely used method is to calculate and compare the Euclidean distance between the given spectrum and the spectra in a database. But it is non-trivial problem because of the inherent high dimensionality of the data. One of the most serious problems is the high computational complexity of searching for the closet spectra. To overcome this problem, we presented the MPS Sort with Sorted Variance+PDS method for the fast algorithm to search for the closet spectra in the last paper. the proposed algorithm uses two significant features of a vector, mean values and variance, to reject many unlikely spectra and save a great deal of computation time. In this paper, we present two new methods for the fast algorithm to search for the closet spectra. the PCA+PDS algorithm reduces the amount of computation by reducing the dimension of the data through PCA transformation with the same result as the distance calculation using the whole data. the Hierarchical Cluster Tree algorithm makes a binary hierarchical tree using PCA transformed spectra data. then it start searching from the clusters closest to the input spectrum and do not calculate many spectra that can not be candidates, which save a great deal of computation time. As the Experiment results, PCA+PDS shows about 60.06% performance improvement for the MPS Sort with Sorted Variance+PDS. also, Hierarchical Tree shows about 17.74% performance improvement for the PCA+PDS. The results obtained confirm the effectiveness of the proposed algorithm.

Research on ITB Contract Terms Classification Model for Risk Management in EPC Projects: Deep Learning-Based PLM Ensemble Techniques (EPC 프로젝트의 위험 관리를 위한 ITB 문서 조항 분류 모델 연구: 딥러닝 기반 PLM 앙상블 기법 활용)

  • Hyunsang Lee;Wonseok Lee;Bogeun Jo;Heejun Lee;Sangjin Oh;Sangwoo You;Maru Nam;Hyunsik Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.471-480
    • /
    • 2023
  • The Korean construction order volume in South Korea grew significantly from 91.3 trillion won in public orders in 2013 to a total of 212 trillion won in 2021, particularly in the private sector. As the size of the domestic and overseas markets grew, the scale and complexity of EPC (Engineering, Procurement, Construction) projects increased, and risk management of project management and ITB (Invitation to Bid) documents became a critical issue. The time granted to actual construction companies in the bidding process following the EPC project award is not only limited, but also extremely challenging to review all the risk terms in the ITB document due to manpower and cost issues. Previous research attempted to categorize the risk terms in EPC contract documents and detect them based on AI, but there were limitations to practical use due to problems related to data, such as the limit of labeled data utilization and class imbalance. Therefore, this study aims to develop an AI model that can categorize the contract terms based on the FIDIC Yellow 2017(Federation Internationale Des Ingenieurs-Conseils Contract terms) standard in detail, rather than defining and classifying risk terms like previous research. A multi-text classification function is necessary because the contract terms that need to be reviewed in detail may vary depending on the scale and type of the project. To enhance the performance of the multi-text classification model, we developed the ELECTRA PLM (Pre-trained Language Model) capable of efficiently learning the context of text data from the pre-training stage, and conducted a four-step experiment to validate the performance of the model. As a result, the ensemble version of the self-developed ITB-ELECTRA model and Legal-BERT achieved the best performance with a weighted average F1-Score of 76% in the classification of 57 contract terms.

A Study on the Effect of the Introduction Characteristics of Cloud Computing Services on the Performance Expectancy and the Intention to Use: From the Perspective of the Innovation Diffusion Theory (클라우드 컴퓨팅 서비스의 도입특성이 조직의 성과기대 및 사용의도에 미치는 영향에 관한 연구: 혁신확산 이론 관점)

  • Lim, Jae Su;Oh, Jay In
    • Asia pacific journal of information systems
    • /
    • v.22 no.3
    • /
    • pp.99-124
    • /
    • 2012
  • Our society has long been talking about necessity for innovation. Since companies in particular need to carry out business innovation in their overall processes, they have attempted to apply many innovation factors on sites and become to pay more attention to their innovation. In order to achieve this goal, companies has applied various information technologies (IT) on sites as a means of innovation, and consequently IT have been greatly developed. It is natural for the field of IT to have faced another revolution which is called cloud computing, which is expected to result in innovative changes in software application via the Internet, data storing, the use of devices, and their operations. As a vehicle of innovation, cloud computing is expected to lead the changes and advancement of our society and the business world. Although many scholars have researched on a variety of topics regarding the innovation via IT, few studies have dealt with the issue of could computing as IT. Thus, the purpose of this paper is to set the variables of innovation attributes based on the previous articles as the characteristic variables and clarify how these variables affect "Performance Expectancy" of companies and the intention of using cloud computing. The result from the analysis of data collected in this study is as follows. The study utilized a research model developed on the innovation diffusion theory to identify influences on the adaptation and spreading IT for cloud computing services. Second, this study summarized the characteristics of cloud computing services as a new concept that introduces innovation at its early stage of adaptation for companies. Third, a theoretical model is provided that relates to the future innovation by suggesting variables for innovation characteristics to adopt cloud computing services. Finally, this study identified the factors affecting expectation and the intention to use the cloud computing service for the companies that consider adopting the cloud computing service. As the parameter and dependent variable respectively, the study deploys the independent variables that are aligned with the characteristics of the cloud computing services based on the innovation diffusion model, and utilizes the expectation for performance and Intention to Use based on the UTAUT theory. Independent variables for the research model include Relative Advantage, Complexity, Compatibility, Cost Saving, Trialability, and Observability. In addition, 'Acceptance for Adaptation' is applied as an adjustment variable to verify the influences on the expected performances from the cloud computing service. The validity of the research model was secured by performing factor analysis and reliability analysis. After confirmatory factor analysis is conducted using AMOS 7.0, the 20 hypotheses are verified through the analysis of the structural equation model, accepting 12 hypotheses among 20. For example, Relative Advantage turned out to have the positive effect both on Individual Performance and on Strategic Performance from the verification of hypothesis, while it showed meaningful correlation to affect Intention to Use directly. This indicates that many articles on the diffusion related Relative Advantage as the most important factor to predict the rate to accept innovation. From the viewpoint of the influence on Performance Expectancy among Compatibility and Cost Saving, Compatibility has the positive effect on both Individual Performance and on Strategic Performance, while it showed meaningful correlation with Intention to Use. However, the topic of the cloud computing service has become a strategic issue for adoption in companies, Cost Saving turns out to affect Individual Performance without a significant influence on Intention to Use. This indicates that companies expect practical performances such as time and cost saving and financial improvements through the adoption of the cloud computing service in the environment of the budget squeezing from the global economic crisis from 2008. Likewise, this positively affects the strategic performance in companies. In terms of effects, Trialability is proved to give no effects on Performance Expectancy. This indicates that the participants of the survey are willing to afford the risk from the high uncertainty caused by innovation, because they positively pursue information about new ideas as innovators and early adopter. In addition, they believe it is unnecessary to test the cloud computing service before the adoption, because there are various types of the cloud computing service. However, Observability positively affected both Individual Performance and Strategic Performance. It also showed meaningful correlation with Intention to Use. From the analysis of the direct effects on Intention to Use by innovative characteristics for the cloud computing service except the parameters, the innovative characteristics for the cloud computing service showed the positive influence on Relative Advantage, Compatibility and Observability while Complexity, Cost saving and the likelihood for the attempt did not affect Intention to Use. While the practical verification that was believed to be the most important factor on Performance Expectancy by characteristics for cloud computing service, Relative Advantage, Compatibility and Observability showed significant correlation with the various causes and effect analysis. Cost Saving showed a significant relation with Strategic Performance in companies, which indicates that the cost to build and operate IT is the burden of the management. Thus, the cloud computing service reflected the expectation as an alternative to reduce the investment and operational cost for IT infrastructure due to the recent economic crisis. The cloud computing service is not pervasive in the business world, but it is rapidly spreading all over the world, because of its inherited merits and benefits. Moreover, results of this research regarding the diffusion innovation are more or less different from those of the existing articles. This seems to be caused by the fact that the cloud computing service has a strong innovative factor that results in a new paradigm shift while most IT that are based on the theory of innovation diffusion are limited to companies and organizations. In addition, the participants in this study are believed to play an important role as innovators and early adapters to introduce the cloud computing service and to have competency to afford higher uncertainty for innovation. In conclusion, the introduction of the cloud computing service is a critical issue in the business world.

  • PDF

Extension Method of Association Rules Using Social Network Analysis (사회연결망 분석을 활용한 연관규칙 확장기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.111-126
    • /
    • 2017
  • Recommender systems based on association rule mining significantly contribute to seller's sales by reducing consumers' time to search for products that they want. Recommendations based on the frequency of transactions such as orders can effectively screen out the products that are statistically marketable among multiple products. A product with a high possibility of sales, however, can be omitted from the recommendation if it records insufficient number of transactions at the beginning of the sale. Products missing from the associated recommendations may lose the chance of exposure to consumers, which leads to a decline in the number of transactions. In turn, diminished transactions may create a vicious circle of lost opportunity to be recommended. Thus, initial sales are likely to remain stagnant for a certain period of time. Products that are susceptible to fashion or seasonality, such as clothing, may be greatly affected. This study was aimed at expanding association rules to include into the list of recommendations those products whose initial trading frequency of transactions is low despite the possibility of high sales. The particular purpose is to predict the strength of the direct connection of two unconnected items through the properties of the paths located between them. An association between two items revealed in transactions can be interpreted as the interaction between them, which can be expressed as a link in a social network whose nodes are items. The first step calculates the centralities of the nodes in the middle of the paths that indirectly connect the two nodes without direct connection. The next step identifies the number of the paths and the shortest among them. These extracts are used as independent variables in the regression analysis to predict future connection strength between the nodes. The strength of the connection between the two nodes of the model, which is defined by the number of nodes between the two nodes, is measured after a certain period of time. The regression analysis results confirm that the number of paths between the two products, the distance of the shortest path, and the number of neighboring items connected to the products are significantly related to their potential strength. This study used actual order transaction data collected for three months from February to April in 2016 from an online commerce company. To reduce the complexity of analytics as the scale of the network grows, the analysis was performed only on miscellaneous goods. Two consecutively purchased items were chosen from each customer's transactions to obtain a pair of antecedent and consequent, which secures a link needed for constituting a social network. The direction of the link was determined in the order in which the goods were purchased. Except for the last ten days of the data collection period, the social network of associated items was built for the extraction of independent variables. The model predicts the number of links to be connected in the next ten days from the explanatory variables. Of the 5,711 previously unconnected links, 611 were newly connected for the last ten days. Through experiments, the proposed model demonstrated excellent predictions. Of the 571 links that the proposed model predicts, 269 were confirmed to have been connected. This is 4.4 times more than the average of 61, which can be found without any prediction model. This study is expected to be useful regarding industries whose new products launch quickly with short life cycles, since their exposure time is critical. Also, it can be used to detect diseases that are rarely found in the early stages of medical treatment because of the low incidence of outbreaks. Since the complexity of the social networking analysis is sensitive to the number of nodes and links that make up the network, this study was conducted in a particular category of miscellaneous goods. Future research should consider that this condition may limit the opportunity to detect unexpected associations between products belonging to different categories of classification.

Development of the Dynamic Model for the Metabolic Network of Clostridium acetobutylicum (Clostridium acetobutylicum의 대사망의 동적모델 개발)

  • Kim, Woohyun;Eom, Moon-Ho;Lee, Sang-Hyun;Choi, Jin-Dal-Rae;Park, Sunwon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.226-232
    • /
    • 2013
  • To produce biobutanol, fermentation processes using clostridia that mainly produce acetone, butanol and ethanol are used. In this work, a dynamic model describing the metabolic reactions in an acetone-butanol-ethanol (ABE)-producing clostridium, Clostridium acetobutylicum ATCC824, was proposed. To estimate the 58 kinetic parameters of the metabolic network model with experimental data obtained from a batch fermentor, we used an efficient optimization method combining a genetic algorithm and the Levenberg-Marquardt method because of the complexity of the metabolism of the clostridium. For the verification of the determined parameters, the developed metabolic model was evaluated by experiments where genetically modified clostridium was used and the initial concentration of glucose was changed. Consequently, we found that the developed kinetic model for the metabolic network was considered to describe the dynamic metabolic state of the clostridium sufficiently. Thus, this dynamic model for the metabolic reactions will contribute to designing the clostridium as well as the fermentor for higher productivity.

Genetic Parameters of Reproductive and Meat Quality Traits in Korean Berkshire Pigs

  • Lee, Joon-Ho;Song, Ki-Duk;Lee, Hak-Kyo;Cho, Kwang-Hyun;Park, Hwa-Chun;Park, Kyung-Do
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.10
    • /
    • pp.1388-1393
    • /
    • 2015
  • Genetic parameters of Berkshire pigs for reproduction, carcass and meat quality traits were estimated using the records from a breeding farm in Korea. For reproduction traits, 2,457 records of the total number of piglets born (TNB) and the number of piglets born alive (NBA) from 781 sows and 53 sires were used. For two carcass traits which are carcass weight (CW) and backfat thickness (BF) and for 10 meat quality traits which are pH value after 45 minutes (pH45m), pH value after 24 hours (pH24h), lightness in meat color (LMC), redness in meat color (RMC), yellowness in meat color (YMC), moisture holding capacity (MHC), drip loss (DL), cooking loss (CL), fat content (FC), and shear force value (SH), 1,942 pig records were used to estimate genetic parameters. The genetic parameters for each trait were estimated using VCE program with animal model. Heritability estimates for reproduction traits TNB and NBA were 0.07 and 0.06, respectively, for carcass traits CW and BF were 0.37 and 0.57, respectively and for meat traits pH45m, pH24h, LMC, RMC, YMC, MHC, DL, CL, FC, and SH were 0.48, 0.15, 0.19, 0.36, 0.28, 0.21, 0.33, 0.45, 0.43, and 0.39, respectively. The estimate for genetic correlation coefficient between CW and BF was 0.27. The Genetic correlation between pH24h and meat color traits were in the range of -0.51 to -0.33 and between pH24h and DL and SH were -0.41 and -0.32, respectively. The estimates for genetic correlation coefficients between reproductive and meat quality traits were very low or zero. However, the estimates for genetic correlation coefficients between reproductive traits and drip and cooking loss were in the range of 0.12 to 0.17 and -0.14 to -0.12, respectively. As the estimated heritability of meat quality traits showed medium to high heritability, these traits may be applicable for the genetic improvement by continuous measurement. However, since some of the meat quality traits showed negative genetic correlations with carcass traits, an appropriate breeding scheme is required that carefully considers the complexity of genetic parameters and applicability of data.