In this paper, we propose an efficient anonymity algorithm for personal information protections in big data systems. Firstly, we briefly introduce fundamental algorithms of k-anonymity, l-diversity, t-closeness. And then we propose an anonymity algorithm using controlling the size of anonymity groups as well as exchanging the data tuple between anonymity groups. Finally, we demonstrate an example on which proposed algorithm applied. The proposed scheme gave an efficient and simple algorithms for the processing of a big amount of data.
The unprecedented power of cloud computing (CC) that enables free sharing of confidential data records for further analysis and mining has prompted various security threats. Thus, supreme cyberspace security and mitigation against adversaries attack during data mining became inevitable. So, privacy preserving data mining is emerged as a precise and efficient solution, where various algorithms are developed to anonymize the data to be mined. Despite the wide use of generalized K-anonymizing approach its protection and truthfulness potency remains limited to tiny output space with unacceptable utility loss. By combining L-diversity and (${\alpha}$,k)-anonymity, we proposed a hybrid K-anonymity data relocation algorithm to surmount such limitation. The data relocation being a tradeoff between trustfulness and utility acted as a control input parameter. The performance of each K-anonymity's iteration is measured for data relocation. Data rows are changed into small groups of indistinguishable tuples to create anonymizations of finer granularity with assured privacy standard. Experimental results demonstrated considerable utility enhancement for relatively small number of group relocations.
Journal of the Korea Institute of Information Security & Cryptology
/
v.21
no.5
/
pp.149-160
/
2011
Technique based on the notions of anonymity is one of several ways to achieve the goal of privacy and it transforms the original data into the micro data by some group based methods. The first notion of group based method is ${\kappa}$-anonymity, and it is enhanced by the notions of ${\ell}$-diversity and t-closeness. Since there is the natural tradeoff between privacy and data utility, the development of practical anonymization algorithms is not a simple work and there is still no noticeable algorithm which achieves some combined anonymity conditions. In this paper, we provides a comparative analysis of previous anonymity and accuracy measures. Moreover we propose an algorithm to achieve ${\ell}$-diversity by the block merging method from a micro-data achieving ${\kappa}$-anonymity.
Journal of the Korean Institute of Intelligent Systems
/
v.20
no.2
/
pp.173-180
/
2010
The research of the preserving privacy of sensitive information has been popular recently. Many researches about the techniques of generalizing records under k-anonymity rules have been done. Considering that data anonymity requires a lot of time and resources, it would be important to decide whether a table is vulnerable to privacy attacks before being opened in terms of the improvement of data utilization as well as the privacy protection. It is also important to check to which attack the table is vulnerable and which of anonymity methods should be applied in the table. This paper describe two possible privacy attacks based upon related references. Also, we suggest the technique to check whether data table is vulnerable to any attack of them and describe what kind of anonymity methods should be done in the table. The technique we suggest in this paper can also be applied for checking the safety of anonymity tables in which insert or delete operations occurred as well from privacy attacks.
Journal of the Korea Institute of Information Security & Cryptology
/
v.17
no.3
/
pp.69-80
/
2007
To protect personal information when releasing data, a general privacy-protecting technique is the removal of all the explicit identifiers, such as names and social security numbers. De-identifying data, however, provides no guarantee of anonymity because released information can be linked to publicly available information to identify them and to infer information that was not intended for release. In recent years, two emerging concepts in personal information protection are k-anonymity and $\ell$-diversity, which guarantees privacy against homogeneity and background knowledge attacks. While these solutions are signigicant in static data environment, they are insufficient in dynamic environments because of vulnerability to inference. Specially, the problem appeared in record deletion is to deconstruct the k-anonymity and $\ell$-diversity. In this paper, we present an approach to securely anonymizing a continuously changeable dataset in an efficient manner while assuring high data quality.
Purpose: Poor anonymity and confidential strategies by a researcher not only develop unprecedented and precedented harm to participants but also impacts the overall critical appraisal of the research outcomes. Therefore, understanding and applying anonymity and confidentiality in research is key for credible research. As such, this research expansively presents the importance of anonymity and confidentiality for research surveys through critical literature reviews of past works. Research design, data and methodology: This research has selected the literature content approach to obtain proper literature dataset which was proven by high degree of validity and reliability using only books and peer-reviewed research articles. The current authors have conducted screening procedure thoroughly to collect better fitted resources. Results: Research findings consistently mentioned the confidentiality and anonymity principles are preserved and implemented as a means of protecting the privacy of all individuals, establishing trust and rapport between researchers and study participants, as a way of critically upholding research ethical standards, and preserving the integrity of research processes. Conclusions: Confidentiality and anonymity are research ethical principles that help in providing informed consent to participants assuring subjects of the privacy of their personal data. As provided by research bodies and organizations, every research process has to incorporate the principles to meet credibility.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.4
no.3
/
pp.217-224
/
2011
This paper proposes DDPT(Dynamic Data Protection Technique) which solves the problem of private information exposure occurring in a dynamic database environment. The DDPT in this paper generates the MAG(Multi-Attribute Generalization) rules using multi-attributes generalization algorithm, and the EC(equivalence class) satisfying the k-anonymity according to the MAG rules. Whenever data is changed, it reconstructs the EC according to the MAC rules, and protects the identification exposure which is caused by the EC change. Also, it measures the information loss rates of the EC which satisfies the ${\ell}$-diversity. It keeps data accuracy by selecting the EC which is less than critical value and enhances private information protection.
Purpose - The objective of this study is to identify the effects of the communication cues and anonymity on group polarization in mobile communication settings, both in terms of route and extent. Research design, data and methodology - Laboratory experiments were conducted to achieve the above research objective; the effect of communication cues on group polarization with social presence as mediation and the direct effect of anonymity, social presence, and perceived cohesion were analyzed. The experiments were conducted by the participation of 240 people, who were divided into 48 groups of 5 people. Results - According to the results, the difference in intergroup polarization due to communication cues and anonymity was insignificant. From this analysis, the structural equation model, communication cues and anonymity did not affect group polarization through social presence. Moreover, anonymity did not affect group polarization through perceived cohesion; however, anonymity directly affected group polarization. Conclusions - This research can help to explain the discussions and the related decision-making actions on internet forums, which have recently come to the rise as well as provide foundational basis in newly establishing policies for the forums.
Purpose - This study aims to identify the effects of communication cues, anonymity, and social presence on group polarization in computer-mediated communication (CMC) settings. Extant literature has introduced some theoretical backgrounds of social presence and SIDE (Social Identity model of Deindividuation Effects) to explain the effects of communication cues and anonymity. The concept of social presence emphasized the mediating role on communication cues and anonymity. However, most literature did not measure social presence and compare group polarization of all condition groups. This does not sufficiently explain the result of group polarization. Research design, data, and methodology - We believe that the direct impact of anonymity on group polarization can provide a more admissible and clearer explanation for the results. In addition, this study categorizes anonymity into two levels, as anonymity of group and anonymity of self. To justify the anonymity view, a laboratory experiment was conducted. The experiment was conducted in communication cues settings (visual cue; without visual cue) and anonymity settings (identified; anonymous). Each of the four settings has 10 groups consisting of five subjects each (total 200 subjects). The subjects are undergraduates from a large university, majoring in business. All experimental procedures and calculations of choice shift and preference change follow the literature. Results - First, the removal of visual cues does not produce a significant impact on group polarization, which cannot be explained by the social presence view. Second, the anonymous condition does not significantly affect group polarization, which also cannot be explained by the social presence view. However, the anonymous condition directly affects group polarization. Specifically, anonymity of self has a stronger effect on group polarization than anonymity of group. The result explains about the leading factor affecting group polarization. This study examines another view of how computer-mediated communication may be associated with group polarization. The process and outcome data from the experiment reveal that group polarization is not affected by level of social presence, but by level of anonymity. Group discussions conducted with visual cue CMC setting and identified CMC setting result in weaker group polarization. Conversely, group discussions conducted without visual cue CMC setting and anonymous CMC setting lead to stronger group polarization. The results of the study have the following implications. First, they provide clues for business organizations to design the most appropriate media conditions and preemptive social conditions to implement when making group decisions through CMC, to maximize achievements, generate amicable agreements, or actively share information. Second, this study can be useful in analyzing different adverse effects generated through Internet use. Conclusions - This research can help explain discussions and decision-making actions on Internet forums, which have recently increased, as well as providing a foundational basis in newly establishing policies for the forums. Finally, it should be noted that many other factors such as group size, topics, and group history may affect group polarization. These should be examined in future studies.
Journal of Information Technology Applications and Management
/
v.25
no.1
/
pp.87-104
/
2018
The internet is spreading widely and malicious comments which is a negative aspect is increasing. Previous studies have considered anonymity as a cyber characteristic of malicious comments. However, there are a theoretical confusion due to inconsistent results. In addition, the dissemination, one of cyber characteristics, have been mentioned the theoretical relationship on malicious comments, but measurement and empirical study about dissemination were still limited. Therefore, this study developed a measurement of dissemination and investigated the relationship between cyber characteristics (anonymity, dissemination) and malicious comments on Facebook. As a result of research, this study identified that anonymity is not significant on malicious comments and discovered that the dissemination of cyber space has a direct influence on malicious comments. This study suggests that information systems can contribute to malicious comments researches by proposing cyber characteristics.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.