• Title/Summary/Keyword: damping coefficients

Search Result 433, Processing Time 0.028 seconds

Numerical Study on the Improvement of the Motion Performance of a Light Buoy

  • Son, Bo-Hun;Jeong, Se-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.66-76
    • /
    • 2020
  • A light buoy is equipped with lighting functions and navigation signs. Its shape and colors indicate the route to vessels sailing nearby in the daytime, with its lights providing this information at night. It also plays a role in notifying the presence of obstacles such as reefs and shallows. When a light buoy operates in the ocean, the visibility and angle of light from the lantern installed on the buoy changes, which may cause them to function improperly. Therefore, it is necessary for the buoy to have stable and minimal motions under given environmental conditions, mainly waves. In this study, motion analyses for a newly developed lightweight light-buoy in waves were performed to predict the motion performance and determine the effect of the developed appendages for improving the motion performance. First, free decay tests, including benchmark cases, were performed using computational fluid dynamics (CFD) to estimate the viscous damping coefficients, which could not be obtained using potential-based simulations. A comparison was made of the results from potential-based simulations with and without considering viscous damping coefficients, which were estimated using CFD. It was confirmed that the pitch and heave motions of the buoy became smaller when the developed appendages were adopted.

An Experimental Method for Obtaining Aerodynamic Roll Damping Coefficients of Fin Stabilized Projectile from Telemetry Experiments (텔레메트리 시험을 이용한 날개안정형 발사체의 회전감쇠 공력계수 실험적 산출 방법)

  • Kim, Jinseok;Kim, Gyeonghun;Choi, Jaehyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.784-789
    • /
    • 2018
  • Accurate aerodynamic characterization of projectile is crucial for successful development of munition. The aerodynamic characterization of fin stabilized projectile is more difficult than characterization of traditional symmetric ballistic projectile. Instrumented free flight experiments were conducted to quantify rolling behavior of fin stabilized projectile. The instrumented projectiles were launched from a rifled tube and the onboard sensor data were acquired through a telemetry transmitter. Roll rate was measured for fin stabilized projectile by means of an angular rate sensor. And, roll damping coefficients were estimated from onboard sensor data acquired during gun firing and trajectory analysis of mathematical model.

The Nonlinear Analysis and Modeling of the ER Fluid Damper Using Higher Order Spectrum (고차 주파수 스펙트럼을 이용한 ER 유체 댐퍼의 비선형 특성 해석 및 모델링 연구)

  • Kim, Dong-Hyun;Joung, Tae-Whee;Joh, Joongseon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.105-112
    • /
    • 2006
  • The nonlinear damping force model is made to identify the properties of the ER (electro-rheological) fluid suspension damper. The instrumentation is carried out to measure the damping force of the ER damper. The higher order spectral analysis method is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. The distinctive higher order nonlinear characteristics are observed. The nonlinear damping force model, which has the higher order velocity terms, is proposed with the result of higher order spectrum analysis. The higher order terms coefficients, which vary according to the strength of the electric field, are calculated using the least square method.

Estimation of viscous and Coulomb damping from free-vibration data by a least-squares curve-fitting analysis

  • Slemp, Wesley C.H.;Hallauer, William L. Jr.;Kapania, Rakesh K.
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.279-290
    • /
    • 2008
  • The modeling and parameter estimation of a damped one-degree-of-freedom mass-spring system is examined. This paper presents a method for estimating the system parameters (damping coefficients and natural frequency) from measured free-vibration motion of a system that is modeled to include both subcritical viscous damping and kinetic Coulomb friction. The method applies a commercially available least-squares curve-fitting software function to fit the known solution of the equations of motion to the measured response. The method was tested through numerical simulation, and it was applied to experimental data collected from a laboratory mass-spring apparatus. The mass of this apparatus translates on linear bearings, which are the primary source of light inherent damping. Results indicate that the curve-fitting method is effective and accurate for both perfect and noisy measurements from a lightly damped mass-spring system.

A Study on Numerical Modeling of a Wave Absorber

  • Moon, Won-Min;Kwon, Sun-Hong;Lee, Hee-Sung
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.4 no.1
    • /
    • pp.22-30
    • /
    • 2001
  • A new concept wave absorber is proposed. It is a net type wave absorber. Its efficiency was reported in another publication. Since it is based on new concept, the traditional wave absorber theory is not applicable. It is modeled by introducing damping terms in linearized free surface boundary conditions in this study. The length and the thickness of the wave absorber are modeled by the length and the coefficient of the damping terms. Series of experiments are carried out to get the data for the coefficients of the damping term. The boundary element method is adopted to solve the system. The predicted wave heights show excellent agreement with those of experiments when the lengths of the incoming waves are within the length of the wave absorber.

  • PDF

Damping Force Modeling of Shock Absorbers Using Hyperbolic tangent (Hyperbolic tangent를 이용한 충격 흡수기 감쇠력 모델 연구)

  • 서정원;한형석;노규석;허승진;김기훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1479-1482
    • /
    • 2003
  • The shock absorber is a part having a direct influence on the ride comfort, stability and dynamic load prediction of a vehicle. Thus, a rationally modeled shock absorber should be required in the dynamic analysis of vehicles. This thesis presents a modified model, based on Worden's hyperbolic tangent function, in order to fit experimental data on the velocity-damping force of a shock absorber. The hyperbolic tangent function correctly indicates the characteristics of a shock absorber. and has the advantage of containing physical causality. To evaluate the method, comparative evaluations of the linear model. the 5th polynomial model and Worden's model were carried out. The function presented in this paper is not only simple but also makes it possible to estimate the function coefficients easily and visually. In addition, it has the advantage of containing physical causality. Lastly, it effectively models the damping force of a shock absorber.

  • PDF

Steady State Respknse of a Rotor Supported on Cavitated Squeeze Film Dampers (공동 스퀴즈 필름 댐퍼에 지지된 회전체의 정상상태 응답 해석)

  • 정시영;정재천;심상규
    • Journal of KSNVE
    • /
    • v.2 no.3
    • /
    • pp.213-222
    • /
    • 1992
  • The effect of cavitation on the synchronous steady state response of a single rotor supported on cavitated squeeze film dampers executing a circular orbit is investigated theoretically. The Swift-Stieber boundary conditions and a long bearing approximation are utillized to evaluate the direct and the cross coupled damping coefficients of a cavitated squeeze film damper. For typical design parameters, frequency response curves are presented here to exhibit the effect of cavitation on the imbalance response and transmissibilities for both a flexible rotor and a rigid rotor. Investigations show that cavitation occured in a squeeze film damper produces bistable jump phenomena and deteriorates the performance of a squeeze film damper. This arises from that the large cavity causes substantial increment of the cross coupled damping which has radial stiffening effect. Furthermore, the large cavity causes the decrement of the direct damping which has pure damping effect. It is also observed that in the absence of cavitation, both rotor excursion amplitude and imbalance transmissibilities are very well damped.

  • PDF

Effect of External Damping and Tip Mass on Dynamic Stability of Pipes Conveying Fluid (유동유체에 의한 파이프의 동적안정성에 미치는 외부감쇠와 말단질량의 영향)

  • Kim, H.J.;Ryu, B.J.;Jung, S.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.569-574
    • /
    • 2009
  • The paper presents the influences of the external damping and the tip mass on dynamic stability of a vertical cantilevered pipe conveying fluid. In general, real pipe systems may have some valves and attached mechanical parts, which can be regarded as attached lumped masses and support-dampers. The support-dampers can be assumed as viscous dampers. The equations of motion are derived by energy expressions using extended Hamilton's principle, and some numerical results using Galerkin's method are presented. Critical flow velocities and stability maps of the pipe with external dampers and tip mass are obtained for various tip mass ratios, external damping coefficients and positions of the viscous dampers.

Effect of External Damping and Tip Mass on Dynamic Stability of Pipes Conveying Fluid (유동유체에 의한 파이프의 동적안정성에 미치는 외부감쇠와 말단질량의 영향)

  • Ryu, B.J.;Jung, S.H.;Shin, G.B.;Han, H.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.465-468
    • /
    • 2005
  • The paper deals with the influences of external damping and tip mass on dynamic stability of a vertical cantilevered pipe conveying fluid. In general, real pipe systems may have some valves and attached parts, which can be regarded as attached lumped masses and support-dampers. The support-dampers can be assumed as viscous dampers. The equations of motion are derived by energy expressions using extended Hamilton's principle, and some numerical results using Galerkin's method are presented. Critical flow velocities and stability maps of the pipe with external dampers and tip mass are obtained for various tip mass ratios, external damping coefficients and positions of the viscous dampers.

  • PDF

Seismic Response Control of Structures Using Variable Stiffness and Variable Damping Devices (가변강성 및 가변감쇠 조절장치를 이용한 구조물의 지진응답제어)

  • 고현무;옥승용;우지영;박관순
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.449-456
    • /
    • 2003
  • Hybrid semi-active control system is applied to improve the seismic peformance of the building structure against earthquake excitation and the LQR-based semi-active control algorithm is developed to tune the integrated stiffness/damping characteristics of the hybrid system complementarily. Numerical simulation for a 8-story shear building has been carried out to verify the applicability and effectiveness of the proposed method. Analysis results showed that the hybrid system can be a compromising solution to the seismic response control problem, compared with conventional variable stiffness or variable damping systems. Comparison results proved that the proposed algorithm can perform refined tuning of the stiffness and damping coefficients of the hybrid semi-active control system better than sliding mode control algorithm.

  • PDF