• Title/Summary/Keyword: damper modeling

Search Result 162, Processing Time 0.024 seconds

A new metallic energy dissipation system for steel frame based on negative Poisson's ratio structures

  • Milad Masoodi;Ahmad Ganjali;Hamidreza Irani;Aboozar Mirzakhani
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.93-102
    • /
    • 2024
  • Using negative Poisson's ratio materials, an innovative metallic-yielding damper is introduced for the first time in this study. Through the use of ABAQUS commercial software, a nonlinear finite element analysis is conducted to determine the performance of the proposed system. Mild steel plates with elliptical holes are used for these types of dampers, which dissipate energy through an inelastic deformation of the constitutive material. To assess the capability of the proposed damper, nonlinear quasi-static finite element analyses have been conducted on the damper with a variety of geometric parameters. According to the results, the proposed system is ductile and has a high capacity to dissipate energy. The proposed auxetic damper has a specific energy absorption of 910.8 J/kg and a ductility of 33.6. Therefore, this damper can dissipate a large amount of earthquake input energy without buckling by increasing the buckling load of the brace with its ductile behavior. In addition, it was found that by incorporating auxetic dampers in the steel frame, the frame was made harder, stronger, and ductile and its energy absorption increased by 300%.

Vibration Suppression of a Cantilever Beam Using MTMD (MTMD를 이용한 보의 진동 억제)

  • Bae, Jae-Sung;Hwang, Jai-Hyuk;Kim, Jong-Hyuk;Lim, Jae-Hyuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1091-1097
    • /
    • 2011
  • In the present study, TMD(tuned mass damper) with eddy current damping is proposed to suppress the vibration of a cantilever beam effectively. The advantages of TMD are that it is simple and its performance are excellent at any particular frequency. However, TMD may have the low performance at other frequency. To solve this problem and improve its performance, this study applies the eddy current damping to TMD. This TMD with ECD is named as MTMD(magnetically tuned mass damper). MTMD is designed for the vibration suppression of a cantilever beam. The mathematical modeling, simulation, and experiments of the cantilever beam with MTMD are performed. From analytic and experimental results, it can be concluded that the vibration suppression performance of MTMD are excellent.

Modeling and identification of a class of MR fluid foam dampers

  • Zapateiro, Mauricio;Luo, Ningsu;Taylor, Ellen;Dyke, Shirley J.
    • Smart Structures and Systems
    • /
    • v.6 no.2
    • /
    • pp.101-113
    • /
    • 2010
  • This paper presents the results of a series of experiments conducted to model a magnetorheological damper operated in shear mode. The prototype MR damper consists of two parallel steel plates; a paddle covered with an MR fluid coated foam is placed between the plates. The force is generated when the paddle is in motion and the MR fluid is reached by the magnetic field of the coil in one end of the device. Two approaches were considered in this experiment: a parametric approach based on the Bingham, Bouc-Wen and Hyperbolic Tangent models and a non parametric approach based on a Neural Network model. The accuracy to reproduce the MR damper behavior is compared as well as some aspects related to performance are discussed.

Parametric Study on SDOF System with MR Damper Using Hysteretic Biviscous Model (단자유도 시스템에 대한 이력이점성 모델을 사용한 MR감쇠기 변수 연구)

  • 이상현;민경원;이루지;김대곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.27-33
    • /
    • 2004
  • In this paper, various dynamic model of magnetorheological (MR) damper, is required for describing the hysteresis of MR damper and for their application are investigated to structural control. The dynamic characteristics and control effects of the modeling methods for MR dampers such as Bingham, biviscous, hysteretic biviscous, simple Bouc-Wen, Bouc-Wen with mass element and phenomenological models are studied. Of these models, hysteretic biviscous model which is simple and describes the hysteretic characteristics, is chosen for numerical studies. The capacity of MR damper is determined as a portion of not the building weight but the lateral restoring force.

  • PDF

Learning Control of a U-type Tuned Liquid Damper (U 자형 TLD 시스템의 학습제어 기법 개발)

  • Ryu, Yeong-Soon;Ga, Chun-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1584-1589
    • /
    • 2003
  • Simple and effectively developed learning control logic is used to control vibration of U type Tuned Liquid Damper system. The purpose of this paper is design optimal control system to deal with unknown errors from nonlinearity and variation that cost modeling difficulty in complex structure and is followed with the desired behavior. Finally this hybrid control method applied to U type Tuned Liquid Damper structure gives the benefit from better performance of precision and stability of the structure by reducing vibration effect. This research leads to safety design in various structure to robust unspecified foreign disturbances such as earthquake.

  • PDF

On the Modeling and Simulation of Friction for an Automotive Clutch (자동차 클러치의 마찰 모델과 시뮬레이션)

  • 이병수;이재천
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.2
    • /
    • pp.116-125
    • /
    • 2003
  • Four models for stick-slip friction are presented and are adopted for a numerical simulation study for a manual transmission clutch damper in idle mode. Meaning of parameters for friction models are explained and proper values are suggested. Also explained ate the reason why those specific values for the parameters are chosen. Preferable model for the clutch damper In Idle mode is discussed in terms of calculation efficiency and fidelity of the model based on real measured data. For clutch damper idle mode simulation studies, all four models perform equally well.

Development of a full-scale magnetorheological damper model for open-loop cable vibration control

  • Zhang, Ru;Ni, Yi-Qing;Duan, Yuanfeng;Ko, Jan-Ming
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.553-564
    • /
    • 2019
  • Modeling of magnetorheological (MR) dampers for cable vibration control to facilitate the design of even more effective and economical systems is still a challenging task. In this study, a parameter-adaptive three-element model is first established for a full-scale MR damper based on laboratory tests. The parameters of the model are represented by a set of empirical formulae in terms of displacement amplitude, voltage input, and excitation frequency. The model is then incorporated into the governing equation of cable-damper system for investigation of open-loop vibration control of stay cables in a cable-stayed bridge. The concept of optimal voltage/current input achieving the maximum damping for the system is put forward and verified. Multi-mode suboptimal and Single-mode optimal open-loop control method is then developed. Important conclusions are drawn on application issues and unique characteristics of open-loop cable vibration control using MR dampers.

Experimental and numerical evaluation of an innovative diamond-scheme bracing system equipped with a yielding damper

  • Pachideh, Ghasem;Gholhaki, Majid;Kafi, Mohammadali
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.197-211
    • /
    • 2020
  • Application of the steel ring as a type of seismic fuse has been one of the efforts made by researchers in recent years aiming to enhance the ductility of the bracing systems which in turn, possesses various advantages and disadvantages. Accordingly, to alleviate these disadvantages, an innovative bracing system with a diamond scheme equipped with a steel ring is introduced in this paper. In this system, the braces and yielding circular damper act in parallel whose main functionality is to increase ductility, energy absorption and mitigate drawbacks of the existing bracing systems, in which the braces and yielding circular damper act in parallel. To conduct the experimental tests, specimens with three types of rigid, semi-rigid and pinned connections were built and subjected to cyclic loading so that their performance could be analyzed. Promisingly, the results indicate both great applicability and efficiency of the proposed system in energy absorption and ductility. Moreover, it was concluded that as the braces and damper are in parallel, the use of a steel ring with smaller size and thickness would result in higher energy absorption and load-resisting capacity when compared to the other existing systems. Finally, to assess the potential of numerically modeling the proposed system, its finite element model was simulated by ABAQUS software and observed that there is a great agreement between the numerical and experimental results.

A Study on Modeling and Fault Diagnosis of Suspension Systems Using Neural Network (신경망을 이용한 현가시스템의 모델링 및 고장 진단에 관한 연구)

  • 이정호;박기홍;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.95-103
    • /
    • 2003
  • Driving safety of a vehicle is largely influenced by the damper and the tire. Developed in this research is a fault diagnosis algorithm for the two components so that the driver can be promptly informed when fault occurs in one or both of them. To this end, the damper and the tire were modeled using the neural network from their experimental data, and fault diagnosis was made using frequency responses of the damping force and the dynamic wheel force. The algorithm was tested via experiments, and it demonstrated successful diagnostic performance under various driving conditions.

Wafer Motion Modeling of Transfer Unit in Clean Tube System (클린 튜브 시스템 이송 유닛의 웨이퍼 운동 역학 모델링)

  • 신동헌;정규식;윤정용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.66-73
    • /
    • 2004
  • This paper presents wafer motion modeling of transfer unit in clean tube system, which was developed as a means for transferring the air-floated wafers inside the closed tube filled with the super clean airs. When the wafer is transferred in x direction with an initial velocity the motion along x direction can be modeled as a simple decaying motion due to viscous friction of the fluid. But, the motion in y direction is modeled as a mass-spring-damper system where the recovering force by air jets issued from the perforated is modeled as a linear spring. Experiments with a clean tube system built fur 12 wafer show the validity of the presented force and motion models.