• Title/Summary/Keyword: damper modeling

Search Result 162, Processing Time 0.023 seconds

Numerically Analytical Design of An Orifice Fluid Damper (오리피스 유체댐퍼의 수치해석적 설계)

  • 이재천;김성훈;문석준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.105-112
    • /
    • 2003
  • This paper presents the numerical design technology of a passive orifice fluid damper system especially for the characteristics between the damper piston velocity and the damping force. Numerical analysis with the visual interfacial modeling technique was applied into the analysis of the damper system's dynamics. A prototype orifice fluid damper was manufactured and experimentally tested to validate the numerical simulation results. The performances of various damper system schemes were investigated based on the verified numerical simulation model of orifice fluid damper.

Development of tension estimation method without damper modeling error for cable with damper

  • Aiko Furukawa;Yuma Sugimachi;Tomohiro Takeichi
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.2
    • /
    • pp.127-148
    • /
    • 2024
  • Estimating cable tension is important in the maintenance of cable structures, such as cable-stayed bridges. In practice, the higher-order vibration method based on natural frequencies is used. In recent years, dampers have been installed onto cables to suppress aerodynamic vibration. Because the higher-order vibration method is suitable to cables without a damper, the damper must be removed before using this method. Because damper removal is time-consuming and labor-intensive, a previous study proposed a tension estimation method for a cable with a damper based on the natural frequencies, which does not require the damper's removal. However, the previous method relies on the modeling accuracy of the damper's complex stiffness. The damper design formula, while intended for design purposes, does not consistently reflect the damper's actual complex stiffness. Therefore, the estimation accuracy deteriorates when the damper's actual complex stiffness deviates from the damper design formula. With this background, this paper introduces a novel tension estimation method based on mode shapes, which circumvents damper modeling errors since mode shapes are independent of the damper's complex stiffness. In the numerical verification using 90 models, the proposed method estimated tension accurately with an estimation error within 0.59%. In the experimental verification, the proposed method estimated tension accurately with an estimation error within 4.17% except for one case, while the previous method had an estimation error of 44% when the damper design formula was used. The proposed method was found to be superior to the previous method in terms of accuracy and practicality by numerical simulation and experiment.

Dynamic Modeling of ER Damper Considering Fluid Compressibility (유체의 압축성을 고려한 ER 댐퍼의 동적 모델링)

  • Seong, Min-Sang;Ha, Sung-Hun;Nguyen, Quoc-Hung;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.659-666
    • /
    • 2009
  • This paper proposes a new method for dynamic modeling of electrorheological(ER) damper considering fluid compressibility. After describing configuration and operating principle of the ER damper, a quasi-static modeling of the ER damper is conducted on the basis of Bingham model of ER fluid. Subsequently, the dynamic model for describing the ER damper considering compressibility of ER fluid and gas chamber is obtained using the lumped parameter method. This method includes dynamic motions of annular duct, upper chamber, lower chamber and connecting pipe. The hysteresis behavior of the ER damper is evaluated through computer simulations and compared with experimental results. In addition, the hysteresis behavior due to the compressibility of ER fluid and gas chamber is investigated through computer simulations.

Dynamic Modeling of ER Damper Considering Fluid Compressibility (유체의 압축성을 고려한 ER 댐퍼의 동적 모델링)

  • Seong, Min-Sang;Ha, Sung-Hun;Nguyen, Quoc Hung;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.438-443
    • /
    • 2009
  • This paper proposes a new method for dynamic modeling of electrorheological (ER) damper considering fluid compressibility. After describing configuration and operating principle of the ER damper, a quasi-static modeling of the ER damper is conducted on the basis of Bingham model of ER fluid. Subsequently, the dynamic model for describing the ER damper considering compressibility of ER fluid and gas chamber is obtained using the lumped parameter method. This method includes dynamic motions of annular duct, upper chamber, lower chamber and connecting pipe. The hysteresis behavior of the ER damper is evaluated through computer simulations and compared with experimental results. In addition, the hysteresis behavior due to the compressibility of ER fluid and gas chamber is investigated through computer simulations.

  • PDF

Design Automization for Torque Converter Damper Spring Using Optimization (최적화를 통한 토크 컨버터 댐퍼 스프링 설계 자동화에 관한 연구)

  • Park, Byoung-Keon;Hwang, Gil-Un;Kim, Jay-Jung;Jang, Jae-Deok
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.3
    • /
    • pp.163-170
    • /
    • 2007
  • A torque converter, connected to a transmission/transaxle input shaft, connects, multiplies and interrupts the flow of engine torque into the transmission. Damper springs are usually equipped in a torque converter to convert stably the torque power supplied from engine. Damper Springs generally have the most flexible design variables among vehicle transmission parts, so that they could be effective design factors to improve the entire vehicle's performance. Damper spring, however, has geometric complexity after it equipped in a torque converter. For that reason, modeling a damper spring requires expert's knowledge to determine many design parameters and satisfy the functional requirements at the same time. In this paper, we introduce an optimum design method applied in detailed-design stage to reduce design process and financial loss caused by adequate design. Many design variables have to be classified and structuralized for Optimization. This also could make designer concentrate on functional requirements of damper spring, not on design possibility. In addition, modeling an assembled spring has technical restriction with primitives of the current major CAD solutions because of complexity of assembled spring shape. Thus, one of modeling solution presented in this paper since detailed and exact modeling is important for CAE or DMU.

Characterization and modeling of a self-sensing MR damper under harmonic loading

  • Chen, Z.H.;Ni, Y.Q.;Or, S.W.
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1103-1120
    • /
    • 2015
  • A self-sensing magnetorheological (MR) damper with embedded piezoelectric force sensor has recently been devised to facilitate real-time close-looped control of structural vibration in a simple and reliable manner. The development and characterization of the self-sensing MR damper are presented based on experimental work, which demonstrates its reliable force sensing and controllable damping capabilities. With the use of experimental data acquired under harmonic loading, a nonparametric dynamic model is formulated to portray the nonlinear behaviors of the self-sensing MR damper based on NARX modeling and neural network techniques. The Bayesian regularization is adopted in the network training procedure to eschew overfitting problem and enhance generalization. Verification results indicate that the developed NARX network model accurately describes the forward dynamics of the self-sensing MR damper and has superior prediction performance and generalization capability over a Bouc-Wen parametric model.

Experimental calibration of forward and inverse neural networks for rotary type magnetorheological damper

  • Bhowmik, Subrata;Weber, Felix;Hogsberg, Jan
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.673-693
    • /
    • 2013
  • This paper presents a systematic design and training procedure for the feed-forward back-propagation neural network (NN) modeling of both forward and inverse behavior of a rotary magnetorheological (MR) damper based on experimental data. For the forward damper model, with damper force as output, an optimization procedure demonstrates accurate training of the NN architecture with only current and velocity as input states. For the inverse damper model, with current as output, the absolute value of velocity and force are used as input states to avoid negative current spikes when tracking a desired damper force. The forward and inverse damper models are trained and validated experimentally, combining a limited number of harmonic displacement records, and constant and half-sinusoidal current records. In general the validation shows accurate results for both forward and inverse damper models, where the observed modeling errors for the inverse model can be related to knocking effects in the measured force due to the bearing plays between hydraulic piston and MR damper rod. Finally, the validated models are used to emulate pure viscous damping. Comparison of numerical and experimental results demonstrates good agreement in the post-yield region of the MR damper, while the main error of the inverse NN occurs in the pre-yield region where the inverse NN overestimates the current to track the desired viscous force.

Tension estimation method using natural frequencies for cable equipped with two dampers

  • Aiko Furukawa;Kenki Goda;Tomohiro Takeichi
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.4
    • /
    • pp.361-379
    • /
    • 2023
  • In cable structure maintenance, particularly for cable-stayed bridges, cable safety assessment relies on estimating cable tension. Conventionally, in Japan, cable tension is estimated from the natural frequencies of the cable using the higher-order vibration method. In recent years, dampers have been installed on cables to reduce cable vibrations. Because the higher-order vibration method is a method for damper-free cables, the damper must be removed to measure the natural frequencies of a cable without a damper. However, cables on some cable-stayed bridges have two dampers: one on the girder side and another on the tower side. Notably, removing and reinstalling the damper on the tower side are considerably more time- and labor-intensive. This paper introduces a tension estimation method for cables with two dampers, using natural frequencies. The proposed method was validated through numerical simulation and experiment. In the numerical tests, without measurement error in the natural frequencies, the maximum estimation error among 100 models was 3.3%. With measurement error of 2%, the average estimation error was within 5%, with a maximum error of 9%. The proposed method has high accuracy because the higher-order vibration method for a damper-free cable still has an estimation error of 5%. The experimental verification emphasizes the importance of accurate damper modeling, highlighting potential discrepancies between existing damper design formula and actual damper behavior. By revising the damper formula, the proposed method achieved accurate cable tension estimation, with a maximum estimation error of approximately 10%.

Performance Evaluation on an MR Damper Featuring Bypass Hole for Passenger Vehicle (바이패스홀을 특징으로 하는 승용차용 MR 댐퍼의 성능 평가)

  • Oh, Jong-Seok;Shin, Do-Kyun;Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.998-999
    • /
    • 2014
  • This paper proposes a method for damping force modeling of magnetorheological (MR) damper featuring bypass hole. After describing configuration and of the MR damper, a damping force modeling of the MR damper is derived based on Bingham model of MR fluid. MR damper consists of piston, accumulator, gap, bypass hole and coil. Damping force is consists of spring force induced by accumulator, viscous force induced at gap and bypass hole, and controllable force induced at gap.

  • PDF