• Title/Summary/Keyword: damped vibration

Search Result 202, Processing Time 0.027 seconds

Free Vibration Analysis of Horizontally Curved Beams with Variable Cross Sectional Width on Elastic Foundation (탄성지반 위에 놓인 단면폭이 변화하는 수평 곡선보의 자유진동 해석)

  • 이병구;박광규;오상진;이태은
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.29-36
    • /
    • 2003
  • This paper deals with the free vibration analysis of horizontally circular mea beams with variable cross sectional width on elastic foundations. Taking into account the effects of rotatory inertia and shear deformation differential equations governing the free vibrations of such beams are derived, in which the Whlkler foundation model is considered as the elastic foundation. The variable width of beam is chosen as the linear equation. The differential equations are solved numerically to calculate natural frequencies. In numerical examples, the curved beam with the hinged-hinged, hinged-clamped, clamped-hinged and damped-clamped end constraints are considered The parametric studies are conducted and the lowest four frequency parameters are reported in figures as the non-dimensional forms.

  • PDF

Sound Radiation due to Tire Tread Vibration (타이어 트레드의 진동에 의한 음향방사)

  • Kim, Byoung-Sam;Hong, Dong-Pyo;Chung, Tae-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.13-22
    • /
    • 1994
  • A theoretical model is studied to describe the sound radiation by the surface vibration of in-service tires. The tire is modeled as a circular ring model. The effects of normalized frequency and structrual loss factor are included. Through numerical integration of the sound pressure, the radiated sound power is calculated as a fuction of normalized frequency and structural loss factor. The basic sound radiation mechanism is shown to be the damped progressive wave field on the structure in the vicinity of the applied force. The results indicate that the potential sound reduction might be obtained if values of normalized frequency and structural loss factor are investigated.

  • PDF

A Study on Model Reduction for Effective Analysis of Structure (구조물의 효율적인 해석을 위한 모델 축소기법 연구)

  • 박영창;황재혁;오화석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1370-1375
    • /
    • 2001
  • Substructure coupling or component mode synthesis may be employed in the solution of dynamic problems for structure. The model is partitioned into several subdomains. and a generalized Craig-Bampton representation is derived. In this paper the mode sets(normal modes. constraint modes) have been employed for model reduction. A generalized model reduction procedure has been described. Those reduction methods which adapt constraint modes have been described in detail. As examples. a flexible structure and a 10 DOF damped system are analyzed. Comparison with a conventional reduction method based on a complete model has been made via eigenpairs and dynamic responses.

  • PDF

Reducing Effect of Residual Vibration Through Command Input Shaped Considering Partial Modes (부분 모드만을 고려하여 성형된 입력을 이용한 잔류 진동의 감소 효과)

  • Jung, Kwangsuk
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • Shaping an input command through considering the resonant modes of multi degrees of freedom system, it is possible to realize the wanted motion, without exciting the uncontrollable modes of the flexible system. But, an increase of modes to be considered brings inevitably about the time delay due to an excessive rising time. On the purpose of reducing the rising time, only the interesting and dominant modes can be considered to determine the timing pulses of input shaper. In this paper, an effect of shaper by the partial modes is analysed for a specific system and the input shapers by the partial modes are analysed for three d.o.f damped system, using Matlab simulation.

  • PDF

A Vibration-Rejection Control for a Magnetic Suspension System

  • Kim, Jong-moon;Kim, Choon-kyung;Park, Min-kook;Kim, Seog-joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.37.4-37
    • /
    • 2001
  • This paper presents a vibration-rejection control design for a magnetic suspension system which has strong non-linearity, open-loop unstable characteristics, high-order flexible modes, and parameter variations. The target plant to be controlled consists of a U-core electromagnet and a flexible rail. We describe the test rig and formulate the mathematical model and then we set up a control problem as the mixed sensitivity problem where the augmented plant is constructed with frequency weighting functions and the feedback controller is designed by using the H$\infty$ controller. The effectiveness of the designed controller for the magnetic suspension system with high-order flexible modes is validated and justified using several simulations. These results show that the magnetic suspension system is robustly stable against disturbance and gives the well-damped tracking performance ...

  • PDF

Transitional Vibration Characteristics of Single Degree of Freedom System through the Resonance (공진을 통과하는 일자유도계의 과도진동 특성)

  • Chung, Tae-Jin;Hong, Dong-Pyo;Tae, Sin-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.41-46
    • /
    • 1993
  • The transitional characterisics of oscillations and rotational speeds from the starting to the stationary states in damped single degree of freedom systems acted upon the rotor unbalance forces are studied. Angular travel is assumed to vary with time. The theoretical analysis is obtained by using Laplace transform method. Integration involved in the theoretical results is carried out by the numerical analysis program of continuous-time linear systems to arbitrary inputs. It is evident that the transitional charcterixtics of a machine are affected remarkably by damping ratios, stationary angular velocity time and frequency ratios.

  • PDF

Response Characteristics of Forced Vibration Model with Sinusoidal Exciting Force (정현파로 가진한 강제진동 해석과 응답특성)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.131-137
    • /
    • 2020
  • The characteristics of forced vibration with excited sinusoidal force was introduced. Also, numerical analyses and FRF in frequency domain were performed in detail. In this regard, the responses of displacement, velocity and acceleration were investigated in a forced vibration model. The FRF characteristics in real and imaginary part around natural frequency are also discussed. This response approach of forced vibration in time domain is used for the identification and monitoring of sinusoidal forced vibration. For acquiring a displacement, velocity and acceleration, a numerical technique of Runge-Kutta-Gill method was performed. For the FRF(frequency response function), These responses are used. Also, the FRF can represent the intrinsic characteristics of the forced vibration. These performed results and analysis are successful in each damped condition for the forced vibration model. After numerical analysis of the different mass, damping and stiffness, the forced vibration response characteristics with sinusoidal force was discriminated considering its amplitude and frequency simultaneously.

Optimization and application of multiple tuned mass dampers in the vibration control of pedestrian bridges

  • Lu, Zheng;Chen, Xiaoyi;Li, Xiaowei;Li, Peizhen
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.55-64
    • /
    • 2017
  • An effective design approach for Multiple Tuned Mass Dampers (MTMDs) in pedestrian bridges was proposed by utilizing the transfer function to obtain each TMD's optimum stiffness and damping. A systematic simulation of pedestrian excitations was described. The motion equation of a typical MTMD system attached to a Multi-degree-of-freedom (MDOF) system was presented, and the transfer function from the input pedestrian excitations to the output acceleration responses was defined. By solving the minimum norm of the transfer function, the parameters of the MTMD which resulted in the minimum overall responses can be obtained. Two applications of lightly damped pedestrian bridges attached with MTMD showed that MTMDs designed through this method can significantly reduce the structural responses when subjected to pedestrian excitations, and the vibration control effects were better than the MTMD when it was considered as being composed of equal number and mass ratios of TMDs designed by classical Den Hartog method.

Chaos on the Rocking Vibration of Rigid Block Under Two Dimensional Sinusodial Excitation (In the Case of No Sliding Occurrence) (2차원 정현파 가진을 받는 강체블록의 록킹진동에 있어서의 카오스 (미끄럼이 없는 경우에 대하여))

  • 정만용;김정호;김지훈;양광영;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.42-51
    • /
    • 1999
  • This research deals with the non-linearities associated with impact and sliding for the rocking behavior of rigid block subjected to two dimensional excitation of horizontal and vertical direction. The non-linearities examined of impact between block and base: The transition of two governing rocking equations, the abrupt reduction in kinetic energy associated with impact. In this study, the rocking vibration system of two types are considered for several friction condition. One is the undamped rocking vibration system, disregarding energy dissipation at impact and the other is the damped rocking system, including energy dissipation at impact. The response analysis by non-dimensional rocking equation is carried out for the change of excitation amplitude. The chaos responses were discovered in the wide response region, particularly, in the case of high vertical excitation and their chaos characteristics are examined by Poincare map, power spectra and Lyapunov Exponent. The complex behavior of chaos response, in the phase space, were illustrated by Poincare map. Therefore, Poincare map will be a significant material in order to understand chaos of rocking system.

  • PDF

Identification of Fractional-derivative-model Parameters of Viscoelastic Materials Using an Optimization Technique (최적화 기법을 이용한 점탄성물질의 분수차 미분모델 물성계수 추정)

  • Kim, Sun-Yong;Lee, Doo-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1192-1200
    • /
    • 2006
  • Viscoelastic damping materials are widely used to reduce noise and vibration because of its low cost and easy implementation, for examples, on the body structure of passenger cars, air planes, electric appliances and ships. To design the damped structures, the material property such as elastic modulus and loss factor is essential information. The four-parameter fractional derivative model well describes the dynamic characteristics of the viscoelastic damping materials with respect to both frequency and temperature. However, the identification procedure of the four-parameter is very time-consuming one. In this study a new identification procedure of the four-parameters is proposed by using an FE model and a gradient-based numerical search algorithm. The identification procedure goes two sequential steps to make measured frequency response functions(FRF) coincident with simulated FRFs: the first one is a peak alignment step and the second one is an amplitude adjustment step. A numerical example shows that the proposed method is useful in identifying the viscoelastic material parameters of fractional derivative model.