• Title/Summary/Keyword: damped oscillation

Search Result 48, Processing Time 0.022 seconds

Analysis of the Factors Affecting Low-Frequency Oscillations in KEPCO Power System` With Pumped-Storage Plant (한전 전력계통의 저주파 진동현상 요인분석;양수발전기 기동시)

  • Kil Yeong Song;Sae Hyuk Kwon;Kyu Min Ro;Seok Ha Song
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.841-849
    • /
    • 1992
  • In power system operation, the stability of synchronous machine has been recognized one of the most important things. AESOPS program developed by EPRI in U.S.A. is a frequency domain analysis program in power system stability and it computes the electro-mechanical oscillation mode. This paper presents how to analyze the power system small signal stability problem efficiently by uusing the AESOPS program and analyze the various factors affecting the damping characteristics of these oscillations in KEPCO power system of 1986 with pumped-storage plant. To reduce the computing time and efforts, selecting the poorly-damped oscillation mode and clustering technique have been used. The characteristics of load, the amount of power flow on the transmission line and the gain of exciter have a significant effects on the damping of the system while the governing system has only a minor one. With the Power System Stabilizers, the stability of the power system has been improved.

  • PDF

Damped frequencies of precast modular steel-concrete composite railway track slabs

  • Kaewunruen, Sakdirat;Kimani, Stephen Kimindiri
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.427-442
    • /
    • 2017
  • This paper presents unprecedented damped oscillation behaviours of a precast steel-concrete composite slab panel for track support. The steel-concrete composite slab track is an innovative slab track, a form of ballastless track which is becoming increasingly attractive to asset owners as they seek to reduce lifecycle costs and deal with increasing rail traffic speeds. The slender nature of the slab panel due to its reduced depth of construction makes it susceptible to vibration problems. The aim of the study is driven by the need to address the limited research available to date on the dynamic behaviour of steel-concrete composite slab panels for track support. Free vibration analysis of the track slab has been carried out using ABAQUS. Both undamped and damped eigenfrequencies and eigenmodes have been extracted using the Lancsoz method. The fundamental natural frequencies of the slab panel have been identified together with corresponding mode shapes. To investigate the sensitivity of the natural frequencies and mode shapes, parametric studies have been established, considering concrete strength and mass and steel's modulus of elasticity. This study is the world first to observe crossover phenomena that result in the inversion of the natural orders without interaction. It also reveals that replacement of the steel with aluminium or carbon fibre sheeting can only marginally reduce the natural frequencies of the slab panel.

Optimal Snubber Design Strategy for the Resonant Inverter to Reduce RF Noise (공진형 인버터에 있어서 RF Noise 저감을 위한 Snubber 최적 회로 설계에 관한 연구)

  • Kim, Eun-Soo;Yoo, Dong-Wook;Oh, Sung-Chul;Lee, Jong-Moo
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.380-383
    • /
    • 1990
  • When the MOSPET is applied as a switching device for the resonant inverter, a damped oscillating noise is appeared at specific frequency band. This damped Oscillation is caused by the series and parallel resonance due to distributed circuit parameter of snubber and main circuit. This paper describes the frequency-impedance characteristic of the resonant inverter and optimal snubber design strategy to reduce the RF noise.

  • PDF

Vibration control for residential building structure using viscoelastic damper (점탄성 감쇠기를 이용한 주거용 건물의 진동제어)

  • 안상경;오정근;이성원;박현일;김원식;김영석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.127-132
    • /
    • 2003
  • Through advance in construction techniques, engineering progress, availability of new materials, and economic considerations, buildings are becoming taller, lighter, and more flexible. In addition, today/s buildings are largely of regular geometric shape with smooth glass metal exteriors, which increase the likelihood of vortex shedding. The wind induced oscillation of the building, if not properly damped, could cause occupant discomfort and other problem. This paper will deal with residual building structure equipped with viscoelastic dampers. And the dampers are installed on the 42th story according to the maximum relative deformation.

  • PDF

Damped Oscillation of Space Charge Field in a $BaTiO_3$ Photorefractive Crystal ($BaTiO_3$ 광굴절 결정에서 공간 전하장의 감쇄 진동)

  • 이상조;성기영;김기현;곽종훈
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.208-209
    • /
    • 2001
  • 광굴절 결정은 실시간 홀로그램 기록 소자, 영상 증폭, 광교환, novelty filter등의 다양한 광정보 처리 영역에서 사용되어진다 광굴절 결정이 가지고 있는 여러 물리적인 현상들은 이미 잘 설명되어져 있지만, 아직까지 이해되지 않은 현상들도 적지 않다. 이동격자(grating translation technique) 방법을 사용한 광굴절 결정의 이광파 혼합실험에서 발견되는 공간 전하장의 감쇄 진동도 그 중의 하나이다. (중략)

  • PDF

ON SOME SPECIAL CONDITIONS OF n-TH ORDER NON-OSCILLATORY NONLINEAR SYSTEMS

  • Alam, M.-Shamsul;Hossain, M.B.
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.755-765
    • /
    • 2003
  • Krylov-Bogoliubov-Mitropolskii method has been extended to obtain asymptotic solution of n-th order nonlinear differential system characterized by certain non-oscillatory processes. The damping force is considered in such a manner that one of the characteristic roots of the linear system becomes small and others are in integral multiple. The method is illustrated by an example. The solutions for different initial conditions show a good agreement with those obtained by numerical method.

Control of UPFG to Reduce Low Frequency Oscillation (저주파 진동 감쇠를 위한 UPFG의 제어)

  • Kim, Tae-Hyun;Seo, Jang-Cheol;Moon, Seung-Il;Park, Jong-Keun;Han, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.848-850
    • /
    • 1997
  • A control method of UPFC (Unified Power Flow Controller) to reduce low frequency oscillation is proposed. UPFC is modelled by voltage source, which magnitude and phase angle can be controlled. Because there needs some time to change to desired value, d-axis voltage and Q-axis voltage is modeled by 1st order delay. LQG(Linear Quadratic Gaussian) is used. It is shown that low frequency can be damped by control of UPFC effectively.

  • PDF

Quasi-Periodic Oscillations of Off-Limb Flaring Arcade Loops observed in the SDO/HMI Continuum

  • Cho, Il-Hyun;Nakariakov, Valery;Moon, Yong-Jae;Lee, Jin-Yi;Kashapova, Larisa;Cho, Kyung-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.43.2-43.2
    • /
    • 2021
  • In this study, we report oscillations of the total intensity of white light loops in the off-limb solar flare observed in 2017-Sep-10 with the SDO/HMI. The total intensity oscillations are correlated with the area of the flaring loop in the plane of the sky. The oscillatory pattern is well fitted by two consecutive damped oscillations. The period and damping time of the first oscillation are 12.9 minutes and 9.9 minutes, respectively. Those of the second oscillation are 11.7 minutes and 15.4 minutes. The excitation of the oscillations coincides with two consecutive type III radio bursts observed in meter range. Assuming the oscillations are magnetoacoustic waves in the flaring loops with the loop lengths ranging from 30 to 90 Mm, the temperature of the white light emitting loops could be in the range from 0.3 MK to 2.6 MK.

  • PDF

Modeling of the Mechanical Drivetrain of an Electric Vehicle for Investigation of Torsional Oscillation Characteristics (전기자동차 기계적 구동계의 모델링 및 비틀림 진동특성 분석)

  • Kim, Ho-Gi;Oh, Joong-Seok;Kim, Sam-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.866-872
    • /
    • 2008
  • Torsional oscillations of the mechanical drivetrain in electric vehicles are generated under rapid driving conditions. These lead to an uncomfortable jerking of the vehicle and to an increased stress of the mechanical components. To analyze this phenomenon, a drivetrain model is constructed with lumped parameters. The model parameters are identified by geometrical design data and experimental tests. The proposed model is validated by simulation and experimental tests in the time and the frequency domains. As a result, the torsional oscillations are observed at 7Hz of a low damped natural frequency. Also, the analysis of the effect of the parameter variations on the oscillations shows that the oscillation characteristic is mainly dependent on the rotor inertia, and the stiffness of the mounting of the drive aggregate and the driveshaft. The results will be utilized on the basis of the design of an electric drivetrain and an active control of drivetrain oscillations.

Natural Frequency of 2-Dimensional Heaving Circular Cylinder: Frequency-Domain Analysis (상하동요하는 2차원 원주의 고유진동수: 주파수 영역 해석)

  • Lee, Dong-Yeop;Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.2
    • /
    • pp.111-119
    • /
    • 2013
  • The concept of the natural frequency is useful for understanding the characters of oscillating systems. However, when a circular cylinder floating horizontally on the water surface is heaving, due to the hydrodynamic forces, the system is not governed by the equation like that of the harmonic one. In this paper, in order to shed some lights on the more correct use of the concept of the natural frequency, a problem of the heaving circular cylinder is analyzed in the frequency domain. Previously, it was thought that the theory of Ursell (1949) could not be used to get the added mass and wave-making damping for short waves, however, they were obtained by applying an accurate collocation method to the theory in this study. Using the so developed numerical method, we found the added mass and wave-making damping of the circular cylinder for the entire range of the frequency. Then, the MCFR(Modulus of Complex Frequency Response) was used to locate the frequency corresponding to the local maximum of MCFR and we define it as the natural frequency. Comparing our results with the previous investigation, we found that the pressure distribution on the cylinder gets close asymptotically to that of a cylinder in infinite fluid OR close to that of the cylinder, that the approximation of the natural frequency by Lee (2008) is different from our new value only by 0.64%, and that the approximation of the heaving system by an equivalent damped harmonic oscillation is not proper by the reason that is clearly shown from the comparison of the shape of the corresponding MCFRs.