• Title/Summary/Keyword: damaged reinforced concrete

Search Result 321, Processing Time 0.023 seconds

Fatigue Behavior of Steel-Concrete Composite Bridge Deck with Perfobond Rib Shear Connector (유공판재형 전단연결재를 갖는 강-콘크리트 합성바닥판의 피로거동에 관한 연구)

  • Kyung, Kab Soo;Lee, Seung Yong;Jeong, Youn Ju;Kwon, Soon Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.71-80
    • /
    • 2010
  • Bridge deck is directly influenced by environment and vehicle load, it is easily damaged so that it requires an appropriate repair and retrofit. Therefore, developing a bridge deck with high durability is necessary in order to minimize the maintenance of bridge deck and use it to its design life. In this study, static test was carried out to evaluate a fatigue capacity of steel-concrete composite deck, which was newly developed by supplementing problems of existing reinforced concrete deck. Based on results from the static test, fatigue load was decided, and fatigue test was conducted under the constant amplitude repeated load. From the fatigue tests, the S-N curve regarding principle structural details of composite deck was made, and characteristics of fatigue behavior was estimated by comparing and evaluating it with fatigue design criteria. In addition, fatigue design guideline was presented. As a result, it is found that each structural details of composite deck proposed by this study, such as upper flange of corrugated steel plate and middle section of it, shear connector and lower flange of corrugated steel plate, is satisfying the fatigue strength.

Performance assessment using the inverse analysis based a function approach of bridges repaired by ACM from incomplete dynamic data (불완전 동적 데이터로부터 복합신소재로 보강된 교량의 함수기반 역해석에 의한 성능 평가)

  • Lee, Sang-Youl;Noh, Myung-Hyun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.51-58
    • /
    • 2010
  • This work examines the identification of stiffness reduction in damaged reinforced concrete bridges under moving loads, and carries out the performance assessment after repairing using advanced composite materials. In particular, the change of stiffness in each element before and after repairing, based on the Microgenetic algorithm as an advanced inverse analysis, is described and discussed by using a modified bivariate Gaussian distribution function. The proposed method in the study is more feasible than the conventional element-based method from computation efficiency point of view. The validity of the technique is numerically verified using a set of dynamic data obtained from a simulation of the actual bridge modeled with a three-dimensional solid element. The numerical examples show that the proposed technique is a feasible and practical method which can inspect the complex distribution of deteriorated stiffness although there is a difference between actual bridge and numerical model as well as uncertain noise occurred in the measured data.

  • PDF

3-D Configuration Effects of Prestressing Cable Bracing Used for Retrofitting a RC Frame Subjected to Seismic Damage (RC 골조의 내진 보강을 위한 예압 가새의 3-D 배치)

  • Lee, Jin-Ho;Oh, Sang-Gyun;Hisham, El-Ganzori
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.183-191
    • /
    • 2003
  • A four-story reinforced concrete moment resisting frame damaged from an ultimate limit state earthquake is upgraded with prestressing cable bracing. The purpose of this study is to investigate the bracing configuration effects on the 3-D building response using thee different locations of the bracing systems for the retrofitted building. Since the previous work done by the author proved that static incremental loads to collapse analysis as a substitute to dynamic non-linear time history analysis was a valid alternative tool. Thus, static load to collapse analysis is solely applied to evaluate the seismic performance parameters of both the original and upgraded buildings in this study. In results, the exterior bracing system is effective in restraining torsional behavior of the structure under seismic loads, and no sudden failure occurs in this system that enhances the ductility of the building due to the gradual change of building stiffness as the lateral load increases.

Structural monitoring and analyses on the stability and health of a damaged railway tunnel

  • Zhao, Yiding;Yang, Junsheng;Zhang, Yongxing;Yi, Zhou
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.375-386
    • /
    • 2021
  • In this paper, a study of stability and health of a newly-built railway tunnel is presented. The field test was implemented to monitor the secondary lining due to the significant cracking behaviors influenced the stability and health of the tunnel structure. Surface strain gauges were installed for monitoring the status of crack openings, and the monitoring outputs demonstrated that the cracks were still in the developing stage. Additionally, adjacent tunnel and poor condition of surrounding rock were identified as the causes of the lining cracking by systematically characterizing the crack spatial distribution, tunnel site and surrounding rock conditions. Reconstruction of partial lining and reconstruction of the whole secondary lining were designed as the maintenance projects for different cracking regions based on the construction feasibility. For assessing the health conditions of the reinforced lining, embedded strain gauges were set up to continuously measure the strain and the internal force of the reconstructed structures. For the partially reconstructed lining, the outputs show the maximum tensile elongation is 0.018 mm during 227 days, which means the structure has no obvious deformation after maintenance. The one-year monitoring of full-section was implemented in the other two completely reconstructed cross-sections by embedded strain gauge. The outputs show the reconstructed secondary lining has undertaken the pressure of surrounding rock with the time passing. According to the calculated compressive and tensile safety factors, the completely reconstructed lining has been in reliable and safe condition during the past year after reinforcement. It can conclude that the aforementioned maintenance projects can effectively ensure the stability and health of this tunnel.

Study on seismic performance of exterior reinforced concrete beam-column joint under variable loading speeds or axial forces

  • Guoxi Fan;Wantong Xiang;Debin Wang;Zichen Dou;Xiaocheng Tang
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.31-48
    • /
    • 2024
  • In order to get a better understanding of seismic performance of exterior beam-column joint, reciprocating loading tests with variable loading speeds or axial forces were carried out. The main findings indicate that only few cracks exist on the surface of the joint core area, while the plastic hinge region at the beam end is seriously damaged. The damage of the specimen is more serious with the increase of the upper limit of variable axial force. The deflection ductility coefficient of specimen decreases to various degrees after the upper limit of variable axial force increases. In addition, the higher the loading speed is, the lower the deflection ductility coefficient of the specimen is. The stiffness of the specimen decreases as the upper limit of variable axial force or the loading speed increase. Compared to the influence of variable axial force, the influence of the loading speed on the stiffness degradation of the specimen is more obvious. The cumulative energy dissipation and the equivalent viscous damping coefficient of specimen decrease with the increase of loading speed. The influence of variable axial force on the energy dissipation of specimen varies under different loading speeds. Based on the truss model, the biaxial stress criterion, the Rankine criterion, the Kent-Scott-Park model, the equivalent theorem of shearing stress, the softened strut-and-tie model, the controlled slip theory and the proposed equations, a calculation method for the shear capacity is proposed with satisfactory prediction results.

Slab slenderness effect on the punching shear failure of heat-damaged reinforced concrete flat slabs with different opening configurations and flexural reinforcement areas

  • Rajai Z. Al-Rousan;Bara'a R. Alnemrawi
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.627-645
    • /
    • 2024
  • Punching shear is a brittle failure that occurs within the RC flat slabs where stresses are concentrated within small regions, resulting in a catastrophic and unfavorable progressive collapse. However, increasing the slab slenderness ratio is believed to significantly affect the slab's behavior by the induced strain values throughout the slab depth. This study examines the punching shear behavior of flat slabs by the nonlinear finite element analysis approach using ABAQUS software, where 72 models were investigated. The parametric study includes the effect of opening existence, opening-to-column ratio (O/C), temperature level, slenderness ratio (L/d), and flexural reinforcement rebar diameter. The behavior of the punching shear failure was fully examined under elevated temperatures which was not previously considered in detail along with the combined effect of the other sensitive parameters (opening size, slab slenderness, and reinforcement rebar size). It has been realized that increasing the slab slenderness has a major role in affecting the slab's structural behavior, besides the effect of the flexural reinforcement ratio. Reducing the slab's slenderness from 18.27 to 5.37 increased the cracking load by seven times for the slab without openings compared to nine times for the initial stiffness value. In addition, the toughness capacity is reduced up to 80% upon creating an opening, where the percentage is further increased by increasing the opening size by about an additional 10%. Finally, the ultimate deflection capacity of flat slabs with an opening is increased compared to the solid slab with the enhancement being increased for openings of larger size, larger depths, and higher exposure temperature.

A Study on the Damages of Head Works by the Storm Flood in the Area of Cheong Ju and Boeun -Emphasis onFactors Influenced on the Disasters and their Countermeasures- (淸州 및 報恩地方의 頭首工洪水災害에 關한 調査硏究(II) -災害原因 및 對策方案을 中心으로-)

  • Nam, Seong-Woo;Kim, Choul-Kee
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.2
    • /
    • pp.49-55
    • /
    • 1982
  • The purpose of this study is to classify the factors influenced on the damages of head works suffered from the storm flood occurred on July 22 1980 in both Musim and Bochong rivers and to find out an integral counter measures against the causes influenced on the disaster of head works in the engineering aspect of planning, design, construction and maintenance. In this survey, number of samples was taken 25 head Works, and the counter measures against the causes of their disasters summarized was as follows, 1. In the aspect of planning a. As the flood water level after the establishment of head works is more increased than the level before setting of head works owing to having more gentle slope of river bed between the head works than nature slope of river bed. Number of head works should be reduced for the appropriate annexation of them b. In the place where head works is established on the curved point of levee, the destruction of levee becomes severe by the strong deflective current. Therefore the setting of head works on the curved point should be kept off as long as possible and in case of unavoidable circumstances the construction method such as reinforced concrete wall or stone wall filed with concrete and anchored bank revetments should be considered. 2. In the aspect of design a. As scoring phenomena at up stream is serious around the weir Where the concentration of strong current is present in such a place, up stream apron having impermeability should be designed to resist and prevent scoring. b. As the length of apron and protected bed is too short to prevent scoring as down stream bed, the design length should be taken somewhat more than the calculated value, but in the case the calculated length becomes too long to be profitable, a device of water cushion should be considered. c. The structure of protected river bed should be improved to make stone mesh bags fixed to apron and to have vinyl mattress laid on river bed together with the improvement for increasing the stability of stone mesh bags and preventing the sucked sand from the river bed. d. As the shortage of cut-off length, especialy in case of the cutoffs conneting both shore sides of river makes the cause of destruction of embankment and weir body, the culculation of cut-off length should be taken enough length based on seepage length. 3. In the aspect of design and constructions a. The overturing destruction of weir by piping action was based on the jet water through cracks at the construction and expansion joints. therefore the expansion joint should be designed and constructed with the insertion of water proof plate and asphalt filling, and the construction joint, with concaved shape structure and steel reinforcement. b. As the wrong design and construction of the weep holes on apron will cause water piping and weir destruction, the design and construction of filter based on the rule of filter should be kept for weep holes. c. The wrong design and construction of bank revetment caused the severe destruction of levee and weir body resulting from scoring and impulse by strong current and formation of water route behind the revetment. Therefore bank revetment should be designod and constructed with stone wall filled with concrete and anchored, or reinforced concrete wall to prevent the formation of water flow route behind the wall and to resist against the scoring and impulse of strong stream. 4. In the aspect of maintenance When the damaged parts occurred at head works the authorities and farmers concerned should find and mend them as soon as possible with mutual cooperation, and on the other hand public citizen should be guided for good use of public property.

  • PDF

Strength of RC Beam with Various Shear Reinforcement Ratios After Experiencing Different Duration of Fire Load (다양한 전단보강근비를 가진 RC보의 화재노출시간에 따른 강도변화)

  • Seo, Soo-Yeon;Jeoung, Chae-Myeoung;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.188-197
    • /
    • 2010
  • This paper presents research result to study the change of structural capacity of reinforced concrete beams with various shear reinforcement ratios after damage by fire load. In addition, fundamental data are given in order to predict the strength variation of RC member due to fire damage by evaluating the previous calculation method codified in codes. Nine RC beam specimens were made and exposed to the fire controled by the standard fire curve. And the structural capacity was evaluated through a failure test under simple support condition. Previous code formula, ACI code and Eurocode were reviewed and used for the calculation of the strength of specimens damaged by fire. From the test, RC beam specimens exhibited very brittle failure when it exposed to fire controled by standard fire curve during more than one hour. And this failure pattern tended to be more serious when shear reinforcement ratio decreased or fire loading duration increased. From the evaluation of the calculation process in code, the change of strength due to fire can be properly predicted if the damage of materials is well defined.

Estimation of Seismic Performance and Earthquake Damage Ratio of Existing Reinforced Concrete Buildings in Japan (일본의 기존 철근콘트리트건물의 내진성능 및 지진피해율의 평가)

  • 이강석;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.63-74
    • /
    • 2000
  • The main objective of this paper is to apply as the basic data for development of a methodology to discuss the future earthquake preparedness measures in Korea by investigating the concept and applicabilities of the Japanese Standard for Evaluation of Seismic Performance of Existing RC Buildings developed in Japan among the methodologies of all the countries of the world. This paper describes the seismic performance, Is-index, of existing RC buildings in Tokyo, Japan evaluated by the Japanese Standard, also the relationships between Is-index distribution of existing RC buildings in Tokyo and that of Shizuoka and Chiba Prefecture reported already in reference[4][5][6] are investigated. And from the comparison with Is-index to buildings damaged by earthquakes experienced in Japan, the damage ratio due to severe earthquake of 3 districts mentioned above is estimated based on the probabilistic point of view. The results of this study can be utilized to identify urgently required earthquake preparedness measures with highest priority in existing RC buildings, and the methodology to evaluate the seismic performance of existing RC buildings in Japan, statistics analysis method and the methodology to estimate earthquake damage ratio based on the probabilistic point of view shown in this study can be recommended to develop a methodology to discuss the future earthquake preparedness measures in Korea.

  • PDF

Seismic Behavior of a Five-story RC Structure Retrofitted with Buckling-Restrained Braces Using Time-dependent Elements (시간종속요소를 이용한 5층 RC건축물의 비좌굴가새 보강에 대한 내진거동)

  • Shin, Ji-Uk;Lee, Ki-Hak;Lee, Do-Hyung;Jeong, Seong-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.11-21
    • /
    • 2010
  • This study presents seismic responses of 5-story reinforced concrete structures retrofitted with the buckling-restrained braces using a time-dependent element. The time-dependent element having birth and death times can freely be activated within the user defined time intervals during the time history analysis. The buckling-restrained brace that showed the largest energy dissipation capacity among the test specimens in previous research was used for retrofitting the RC buildings in this study. It was assumed that the first story of the damaged building under the first earthquake was retrofitted with the buckling-restrained braces considered as the time-dependent element before the second of the successive earthquakes occurs. Under this assumption, this paper compares seismic responses of the RC structures with the time-dependent element subjected to the successive earthquake. Subjected to the second earthquake, it was observed that activation of the BRB systems largely decreases deformation of the moment frame where the damage was concentrated under the first earthquake. However, damages to the shear wall systems were increased after activation of the BRB systems. Since the cumulative damages of the shear wall systems were infinitesimal compared with the retrofit effect of the moment frame, the BRB system was effective under the successive earthquake.