• Title/Summary/Keyword: damage tolerance assessment

Search Result 20, Processing Time 0.023 seconds

A Study on Prediction of Fatigue Damage Crack Growth for Stiffener Bonded Composite Laminate Panel (보강재 본딩접합 복합재 적층판구조 피로손상 균열진전 수명예측에 대한 연구)

  • Kwon, Jung-Ho;Jeong, Seong-Moon
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.79-84
    • /
    • 2013
  • The prediction and analysis procedure of fatigue damage crack growth life for a stiffener bonded composite laminate panel including center hole and edge notch damage, was studied. It was performed on the basis of fatigue damage growth test results on a laminated skin panel specimens and the analysis results of stress intensity factor for the stiffener bonded composite panel. According to the comparison between experimental test and prediction results of fatigue damage growth life, it was concluded that the residual strength and damage tolerance assessment can be carried out along to the edge notch crack growth.

A Study on Damage Tolerance Assessment for the Butt Lap Joint Structure with the Effects of Fretting Fatigue Cracks (프레팅 피로균열 영향을 고려한 항공기 맞대기중첩연결 구조 손상허용성 연구)

  • Kwon, Jung-Ho;Hwang, Kyung-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.8-17
    • /
    • 2003
  • The butt lap joint structures which are usually designed by the concept of slow crack growth damage tolerance, show frequently the behaviors of multiple site fatigue crack growth around the fastener hole edges due to the fretting between the two jointed parts. In this paper, experimental tests of fatigue crack growth have been performed of a bolted butt lap joint structure having an initial corner crack at the fastener hole edge, with different fretting conditions under a flight load spectrum. The obtained test results were reviewed to investigate the effects of fretting fatigue cracks on the damage tolerance crack growth life. Computations of corner crack growth were also carried out using an existed model to compare with test results.

Impact Properties of S-2 Glass Fiber Composites with Multi-axial Structure (다축 구조 S-2 유리섬유 복합재의 충격 특성)

  • Song, S.W.;Lee, C.H.;Byun, J.H.;Hwang, B.S.;Um, M.K.;Lee, S.K.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.71-75
    • /
    • 2005
  • For the damage tolerance improvement of conventional laminated composites, stitching process have been utilized for providing through-thickness reinforcements. 2D preforms were stacked with S-2 glass plain weave and S-2 glass MWK (Multi-axial Warp Knit) L type. 3D preforms were fabricated using the stitching process. All composite samples were fabricated by RTM (Resin Transfer Molding) process. To examine the damage resistance performance the low speed drop weight impact test has been carried out. For the assessment of damage after the impact loading, specimens were examined by scanning image. CAI (Compressive After Impact) tests were also conducted to evaluate residual compressive strength. Compared with 2D composites, the damage area of 3D composites was reduced by 20-30% and the CAI strength showed 5-10% improvement.

  • PDF

Impact Properties of New 3D Composites by Fiber Placement Processing (섬유 자동 배열에 의한 시로운 3D 복합재의 충격특성)

  • Song S-W;Lee C-H;Song J-E;Byun J-H;Um M-K
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.171-174
    • /
    • 2004
  • In order to improve the damage tolerance of the conventional laminated composites, three­dimensional fiber structures incorporated with stitching yams have been utilized in this study. From the newly developed process termed as TAPIS(TApe Placement Incorporated with Stitching), carbon/epoxy composites have been fabricated. Two-dimensional composites with the same stacking sequence as 3D counterparts have also been fabricated for the property comparison. To examine the damage resistance performance the low speed drop weight impact test has been adopted. For the assessment of damage after the impact loading, specimens were subjected to C-scan nondestructive inspection compression after impact(CAI) were also conducted to evaluate residual compressive strength. Although the damage area of 3D composites was greatly reduced$(30-40\%)$ compared with that of 2D composites, the CAI strength did not show drastic improvement.

  • PDF

Damage Tolerance Assessment for Fatigue-Critical Locations of Wing Structure of Aged Aircraft (장기운영 항공기 주익 구조물 피로임계부위의 손상허용평가)

  • Chun, Young-Cheol;Kim, Won-Cheol;Jin, Ji-Won;Chung, Tae-Jin;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.129-136
    • /
    • 2017
  • This study aims to assess the damage tolerance of the wing structure of aged aircraft with long-term service through the fatigue crack growth analysis and tests. For the fatigue-critical locations (FCL) W2 and W4 in the wing structure, the fatigue stress spectrum was derived based on a previous study. Thereafter, a crack propagation analysis for the FCLs was conducted using the commercial software $NASGRO^{TM}$. The algorithm for the fatigue stress spectrum was verified. Fatigue crack growth tests were then performed for two types of specimens: Type #1 was extracted from the wing structure of aged aircraft, and Type #2 was made of the same material as the wing structure. By comparing the experimental results of these specimens, we assessed the damage tolerance of the wing structure of aged aircraft with service time.

Approaching the assessment of ageing bridge infrastructure

  • Boller, Christian;Starke, Peter;Dobmann, Gerd;Kuo, Chen-Ming;Kuo, Chung-Hsin
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.593-608
    • /
    • 2015
  • In many of the industrialized countries an increasing amount of infrastructure is ageing. This has become specifically critical to bridges which are a major asset with respect to keeping an economy alive. Life of this infrastructure is scattering but often little quantifiable information is known with respect to its damage condition. This article describes how a damage tolerance approach used in aviation today may even be applied to civil infrastructure in the sense that operational life can be applied in the context of modern life cycle management. This can be applied for steel structures as a complete process where much of the damage accumulation behavior is known and may even be adopted to concrete structures in principle, where much of the missing knowledge in damage accumulation has to be substituted by enhanced inspection. This enhanced and continuous inspection can be achieved through robotic systems in a first approach as well as built in sensors in the sense of structural health monitoring (SHM).

A novel monitoring system for fatigue crack length of compact tensile specimen in liquid lead-bismuth eutectic

  • Baoquan Xue;Jibo Tan;Xinqiang Wu;Ziyu Zhang;Xiang Wang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1887-1894
    • /
    • 2024
  • Fatigue strength of the structural materials of lead-cooled fast reactors (LFRs) and accelerator-driven systems (ADS) may be degraded in liquid metal (Lead or lead-bismuth eutectic (LBE)) environments. The fatigue crack growth (FCG) data of structural materials in liquid LBE are necessary for damage tolerance design, safety assessment and life management of key equipment. A novel monitoring system for fatigue crack length was designed on the compliance method and the monitor technology of crack opening displacement (COD) of CT specimens by the linear variable differential transformers (LVDT) system. It can be used to predict the crack length by monitoring the COD of CT specimens in harsh high-temperature liquid LBE using a LVDT system. The prediction accuracy of this system was verified by FCG experiments in room temperature air and liquid LBE at 150, 250 and 350 ℃. The first results obtained in the FCG test for T91 steel in liquid LBE at 350 ℃ are presented.

Salt Tolerance Assessment with NaCl of Stauntonia hexaphylla (Thunb.) Decene. and Raphiolepis indica var. umbellata (Thunb.) Ohashi (NaCl 처리에 따른 멀꿀과 다정큼나무의 내염성 평가)

  • Choi, Su Min;Shin, Hyeon Cheol;Kim, Inhea;Huh, Keun Young;Kim, Daeil
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.617-625
    • /
    • 2013
  • Stauntonia hexaphylla and Raphiolepis indica, cold-tolerant broadleaved evergreens ranging through the southern region of South Korea, were assessed on salt tolerance with NaCl treatment using visual damage, chlorophyll florescence image, and malondialdehyde (MDA) analysis. As NaCl concentrations increased, the soil pH decreased and EC increased, and the soil of S. hexaphylla was affected more strongly by the treatment than that of R. indica. In visual damage, S. hexaphylla withered above 200 mM NaCl at 20 days after the treatment. All individuals of R. indica survived during the experiment though the leaves of R. indica showed visual damages up to 400 mM NaCl. The color changes in chlorophyll fluorescence showed a strong correlation with the degree of visual damage. As NaCl increased, the red color of the leaves of S. hexaphylla was distinctly changed to blue and chlorophyll fluorescence decreased starting from the margin to the middle of a leaf. R. indica showed subtle color changes and remained in red color during the experiment. At five days after the NaCl treatment, the MDA of S. hexaphylla was above $4.56nmol{\cdot}g^{-1}$ when plants showed the highest visual damage and EC. The MDA of R. indica in all treatments showed below $1.5nmol{\cdot}g^{-1}$ except 400 mM NaCl treatment during the experiment.

Health Risk Assessment by Exposure to Heavy Metals in PM2.5 in Ulsan Industrial Complex Area (울산 산단지역 PM2.5 중 중금속 노출에 의한 건강위해성평가)

  • Ji-Yun Jung;Hye-Won Lee;Si-Hyun Park;Jeong-Il Lee;Dan-Ki Yoon;Cheol-Min Lee
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.2
    • /
    • pp.108-117
    • /
    • 2023
  • Background: When particles are absorbed into the human body, they penetrate deep into the lungs and interact with the tissues of the body. Heavy metals in PM2.5 can cause various diseases. The main source of PM2.5 emissions in South Korea's atmosphere has been surveyed to be places of business. Objectives: The concentration of heavy metals in PM2.5 near the Ulsan Industrial Complex was measured and a health risk assessment was performed for residents near the industrial complex for exposure to heavy metals in PM2.5. Methods: Concentrations of heavy metals in PM2.5 were measured at four measurement sites (Ulsan, Mipo, Onsan, Maegok) near the industrial complexes. Heavy metals were analyzed according to the Air Pollution Monitoring Network Installation and Operation Guidelines presented by the National Institute of Environmental Research. Among them, only five substances (Mn, Ni, As, Cd, Cr6+) were targeted. The risk assessment was conducted on inhalation exposure for five age groups, and the excess cancer risk and hazard quotient were calculated. Results: In the risk assessment of exposure to heavy metals in PM2.5, As, Cd, and Cr6+ exceeded the risk tolerance standard of 10-6 for carcinogenic hazards. The highest hazard levels were observed in Onsan and Mipo industrial complexes. In the case of non-carcinogenic hazards, Mn was identified as exceeding the hazard tolerance of 1, and it showed the highest hazard in the Ulsan Industrial Complex. Conclusions: This study presented a detailed health risk from exposure to heavy metals in PM2.5 by industrial complexes located in Ulsan among five age groups. It is expected to be utilized as the basis for preparing damage control and industrial emission reduction measures against PM2.5 exposure at the Ulsan Industrial Complex.

Assessment of Composite Material Flaws on the Type III Cylinders for Compressed Natural Gas Vehicles (압축천연가스자동차용 Type III 용기의 복합재 결함 평가)

  • Kim, Young-Seob;Kim, Lae-Hyun;Yang, Dong-Ju
    • Journal of Energy Engineering
    • /
    • v.20 no.2
    • /
    • pp.90-95
    • /
    • 2011
  • This study was conducted to judge requalification of cylinders by assessing composite flaws such as scratches, cuts, and gouges damaging on the composite of Type III cylinders for compressed natural gas vehicles. As a result of the flaw tolerance test, all specimens have satisfied with minimum requirement cycles according to damage levels based on ISO 19078 and cyclic performance for pressure showed beyond twenty thousands in damage level 1 and 2, and did eighteen thousands to twenty-one thousands in damage level 3. Eight of twelve specimens failed the test due to composite flaws and the rest of the cylinders failed regardless of flaws. The results of Finite Element Method followed by the computer simulation indicated that the stress of 79.5 MPa calculated on the flaw model of $1.25\;mm{\times}200\;mm$ and the stress of 66.6 MPa on the non-flaw model when the service pressure applied to inside of cylinder. The difference between the models is about 19.37%. We concluded that this difference influences fatigue life and this flaw model is a critical value affecting cyclic performance of cylinders.