• Title/Summary/Keyword: damage predictor

Search Result 32, Processing Time 0.029 seconds

Study of using the loss rate of bolt pretension as a damage predictor for steel connections

  • Chui-Hsin Chen;Chi-Ming Lai;Ker-Chun Lin;Sheng-Jhih Jhuang;Heui-Yung Chang
    • Earthquakes and Structures
    • /
    • v.24 no.2
    • /
    • pp.81-90
    • /
    • 2023
  • The maximum drifts are important to the seismic evaluation of steel buildings and connections, but the information can hardly be obtained from the post-earthquake field investigation. This research studies the feasibility of using the loss rate of bolt pretension as an earthquake damage predictor. Full-scale tests were made on four steel connections using bolted-web-welded-flange details. One connection was unreinforced (UN), another was reinforced with double shear plates (DS), and the other two used reduced beam sections (RBS). The preinstalled strain gauges were used to control the pretensions and monitor the losses of the high-strength bolts. The results showed that the loss rate of bolt pretension was highly related to the damage of the connections. The pretensions lost up to 10% in all the connections at the yield drifts of 0.5% to 1%. After yielding of the connections, the pretensions lost significantly until fracture occurred. The UN and DS connections failed with a maximum drift of 4 %, and the two RBS connections showed better ductility and failed with a maximum drift of 6%. Under the far-field-type loading protocol, the loss rate grew to 60%. On the contrary, the rate for the specimen under near-fault-type loading protocol was about 40%. The loss rate of bolt pretension is therefore recommended to use as an earthquake damage predictor. Additionally, the 10% and 40% loss rates are recommended to predict the limit states of connection yielding and maximum strength, respectively, and to define the performance levels of serviceability and life-safety for the buildings.

A Plastic-Damage Model for Lightweight Concrete and Normal Weight Concrete

  • Koh, C.G.;Teng, M.Q.;Wee, T.H.
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.123-136
    • /
    • 2008
  • A new plastic-damage constitutive model applicable to lightweight concrete (LWC) and normal weight concrete (NWC) is proposed in this paper based on both continuum damage mechanics and plasticity theories. Two damage variables are used to represent tensile and compressive damage independently. The effective stress is computed in the Drucker-Prager multi-surface plasticity framework. The stress is then computed by multiplication of the damaged part and the effective part. The proposed model is coded as a user material subroutine and incorporated in a finite element analysis software. The constitutive integration algorithm is implemented by adopting the operator split involving elastic predictor, plastic corrector and damage corrector. The numerical study shows that the algorithm is efficient and robust in the finite element analysis. Experimental investigation is conducted to verify the proposed model involving both static and dynamic tests. The very good agreement between the numerical results and experimental results demonstrates the capability of the proposed model to capture the behaviors of LWC and NWC structures for static and impact loading.

A Study on Classification and Localization of Structural Damage through Wavelet Analysis

  • Koh, Bong-Hwan;Jung, Uk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.754-759
    • /
    • 2007
  • This study exploits the data discriminating capability of silhouette statistics, which combines wavelet-based vertical energy threshold technique for the purpose of extracting damage-sensitive features and clustering signals of the same class. This threshold technique allows to first obtain a suitable subset of the extracted or modified features of our data, i.e., good predictor sets should contain features that are strongly correlated to the characteristics of the data without considering the classification method used, although each of these features should be as uncorrelated with each other as possible. The silhouette statistics have been used to assess the quality of clustering by measuring how well an object is assigned to its corresponding cluster. We use this concept for the discriminant power function used in this paper. The simulation results of damage detection in a truss structure show that the approach proposed in this study can be successfully applied for locating both open- and breathing-type damage even in the presence of a considerable amount of process and measurement noise.

  • PDF

An ensemble learning based Bayesian model updating approach for structural damage identification

  • Guangwei Lin;Yi Zhang;Enjian Cai;Taisen Zhao;Zhaoyan Li
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.61-81
    • /
    • 2023
  • This study presents an ensemble learning based Bayesian model updating approach for structural damage diagnosis. In the developed framework, the structure is initially decomposed into a set of substructures. The autoregressive moving average (ARMAX) model is established first for structural damage localization based structural motion equation. The wavelet packet decomposition is utilized to extract the damage-sensitive node energy in different frequency bands for constructing structural surrogate models. Four methods, including Kriging predictor (KRG), radial basis function neural network (RBFNN), support vector regression (SVR), and multivariate adaptive regression splines (MARS), are selected as candidate structural surrogate models. These models are then resampled by bootstrapping and combined to obtain an ensemble model by probabilistic ensemble. Meanwhile, the maximum entropy principal is adopted to search for new design points for sample space updating, yielding a more robust ensemble model. Through the iterations, a framework of surrogate ensemble learning based model updating with high model construction efficiency and accuracy is proposed. The specificities of the method are discussed and investigated in a case study.

Validation of Photo-comet Assay as a Model for the Prediction of Photocarcinogenicity

  • Kim, Ji-Young;Koh, Woo-Suk;Lee, Mi-Chael
    • Toxicological Research
    • /
    • v.22 no.4
    • /
    • pp.423-429
    • /
    • 2006
  • Recent reports on the photocarcinogenicity and photogerotoxicity of many compounds led to an increasing awareness for the need of a standard approach to test for photogenotoxicity. The comet assay has been recently validated as a sensitive and specific test system for the quantification of DNA damage. Thus, the objectives of this study are to investigate the utility of photo-comet assay for detecting photo-mutagens, and to evaluate its ability to predict rodent photo-carcinogenicity. Photo-comet assays were performed using L5178Y $Tk^{+/-}$ mouse lymphoma cells on five test substances (8-methoxypsoralen, chlorpromazine, lomefloxacin, anthracene and retinoic acid) that demonstrated positive results in photocarcinogenicity tests. For the best discrimination between the test substance-mediated DNA damage and the undesirable DNA damage caused by direct UV absorption, a UV dose-response of the cells in the absence of the test substances was firstly fnalized. Out of 5 test substances, positive comet results were obtained for chlorpromazine, lomefloxacin, anthracene and retinoic acid while 8-methoxypsoralen found negative. An investigation into the predictive value of this photo-comet assay for determining the photocarcinogenicity showed that photo-comet assay has relatively high sensitivity. Therefore, the photo-comet assay with mammalian cells seems to be a good and sensitive predictor of the photocarcinogenic potential of new substances.

Trigeminal somatosensory evoked potential test as an evaluation tool for infraorbital nerve damage

  • Hong, Woo Taik;Choi, Jin-hee;Kim, Ji Hyun;Kim, Yong Hun;Yang, Chae-Eun;Kim, Jiye;Kim, Sug Won
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.4
    • /
    • pp.223-227
    • /
    • 2019
  • Background: Neurosensory changes are frequently observed in the patients with mid-face fractures, and these symptoms are often caused by infraorbital nerve (ION) damage. Although ION damage is a relatively common phenomenon, there are no established and objective methods to evaluate it. The aim of this study was to test whether trigeminal somatosensory evoked potential (TSEP) could be used as a prognostic predictor of ION damage and TSEP testing was an objective method to evaluate ION injury. Methods: In this prospective TSEP study, 48 patients with unilateral mid-face fracture (only unilateral blow out fracture and unilateral zygomaticomaxillary fracture were included) and potential ION damages were enrolled. Both sides of the face were examined with TSEP and the non-traumatized side of the face was used as control. We calculated the latency difference between the affected and the unaffected sides. Results: Twenty-four patients recovered within 3 months, and 21 patients took more than 3 months to recover. The average latency difference between the affected side and unaffected side was 1.4 and 4.1 ms for the group that recovered within 3 months and the group that recovered after 3 months, respectively. Conclusion: Patients who suffered ION damage showed prolonged latency when examined using the TSEP test. TSEP is an effective tool for evaluation of nerve injury and predicting the recovery of patients with ION damage.

Weather Conditions Drive the Damage Area Caused by Armillaria Root Disease in Coniferous Forests across Poland

  • Pawel Lech;Oksana Mychayliv;Robert Hildebrand;Olga Orman
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.548-565
    • /
    • 2023
  • Armillaria root disease affects forests around the world. It occurs in many habitats and causes losses in the infested stands. Weather conditions are important factors for growth and development of Armillaria species. Yet, the relation between occurrence of damage caused by Armillaria disease and weather variables are still poorly understood. Thus, we used generalized linear mixed models to determine the relationship between weather conditions of current and previous year (temperature, precipitation and their deviation from long-term averages, air humidity and soil temperature) and the incidence of Armillaria-induced damage in young (up to 20 years old) and older (over 20 years old) coniferous stands in selected forest districts across Poland. We used unique data, gathered over the course of 23 years (1987-2009) on tree damage incidence from Armillaria root disease and meteorological parameters from the 24-year period (1986-2009) to reflect the dynamics of damage occurrence and weather conditions. Weather parameters were better predictors of damage caused by Armillaria disease in younger stands than in older ones. The strongest predictor was soil temperature, especially that of the previous year growing season and the current year spring. We found that temperature and precipitation of different seasons in previous year had more pronounced effect on the young stand area affected by Armillaria. Each stand's age class was characterized by a different set of meteorological parameters that explained the area of disease occurrence. Moreover, forest district was included in all models and thus, was an important variable in explaining the stand area affected by Armillaria.

Prognostic Value of Serum S100 Protein by Elecsys S100 Immunoassay in Patients with Spontaneous Subarachnoid and Intracerebral Hemorrhages

  • Yoon, Seok-Mann;Choi, Young-Jin;Kim, Hwi-Jun;Shim, Jai-Joon;Bae, Hack-Gun;Yun, Il-Gyu
    • Journal of Korean Neurosurgical Society
    • /
    • v.44 no.5
    • /
    • pp.308-313
    • /
    • 2008
  • Objective: The serum S100 protein has been known to reflect the severity of neuronal damage. The purpose of this study was to assess the prognostic value of the serum S100 protein by Elecsys S100 immunoassay in patients with subarachnoid hemorrhage (SAH) and intracerebral hemorrhage (ICH) and to establish reference value for this new method. Methods: Serum S100 protein value was measured at admission, day 3 and 7 after bleeding in 42 consecutive patients (SAH : 20, ICH : 22) and 74 healthy controls, prospectively. Admission Glasgow coma scale (GCS) score, Hunt & Hess grade and Fisher grade for SAH, presence of intraventricular hemorrhage, ICH volume, and outcome at discharge were evaluated. Degrees of serum S100 elevation and their effect on outcomes were compared between two groups. Results: Median S100 levels in SAH and ICH groups were elevated at admission (0.092 versus $0.283{\mu}g/L$) and at day 3 (0.110 versus $0.099{\mu}g/L$) compared to healthy controls ($0.05{\mu}g/L;$ p<0001). At day 7, however, these levels were normalized in both groups. Time course of S100 level in SAH patient was relatively steady at least during the first 3 days, whereas in ICH patient it showed abrupt S100 surge on admission and then decreased rapidly during the next 7 days, suggesting severe brain damage at the time of bleeding. In ICH patient, S100 level on admission correlated well with GCS score (r=-0.859; p=0.0001) and ICH volume (r=0.663; p=0.001). A baseline S100 level more than $0.199{\mu}g/L$ predicted poor outcome with 92% sensitivity and 90% specificity. Logistic regression analyses showed Ln (S100) on admission as the only independent predictor of poor outcome (odd ratio 36.1; 95% CI, 1.98 to 656.3) Conclusion: Brain damage in ICH patient seems to develop immediately after bleeding, whereas in SAH patients it seems to be sustained for few days. Degree of brain damage is more severe in ICH compared to SAH group based on the S100 level. S100 level is considered an independent predictor of poor outcome in patient with spontaneous ICH, but not in SAH. Further study with large population is required to confirm this result.

A Systematic Approach for Mechanical Integrity Evaluation on the Degraded Cladding Tube of Spent Nuclear Fuel Under Transportation Pinch Force

  • Lee, Seong-Ki;Park, Joon-Kyoo;Kim, Jae-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.3
    • /
    • pp.307-322
    • /
    • 2021
  • This study developed an analytical methodology for the mechanical integrity of spent nuclear fuel (SNF) cladding tubes under external pinch loads during transportation, with reference to the failure mode specified in the relevant guidelines. Special consideration was given to the degraded characteristics of SNF during dry storage, including oxide and hydride contents and orientations. The developed framework reflected a composite cladding model of elastic and plastic analysis approaches and correlation equations related to the mechanical parameters. The established models were employed for modeling the finite elements by coding their physical behaviors. A mechanical integrity evaluation of 14 × 14 PWR SNF was performed using this system. To ensure that the damage criteria met the applicable legal requirements, stress-strain analysis results were separated into elastic and plastic regions with the concept of strain energy, considering both normal and hypothetical accident conditions. Probabilistic procedures using Monte Carlo simulations and reliability evaluations were included. The evaluation results showed no probability of damage under the normal conditions, whereas there were small but considerably low probabilities under accident conditions. These results indicate that the proposed approach is a reliable predictor of SNF mechanical integrity.

Neuropsychiatric Evaluation of Head-Injured Patients(II) : A Comparative Study of Brain-injured Patients with and without Abnormal Findings in the Structural Brain Imaging - Mainly in Relation to Functional Brain Studies and Psychological Evaluation (두부외상 환자의 신경정신의학적 평가(II) : 뇌의 구조적 영상검사상의 병변 유무에 따른 두부외상 환자군의 비교 - 기능적 및 심리적 검사소견과의 연관성을 중심으로)

  • Cho, Seoung Wook;Chang, Hwan-Il
    • Korean Journal of Biological Psychiatry
    • /
    • v.3 no.1
    • /
    • pp.66-74
    • /
    • 1996
  • There has been an increase in head trauma due to rapid industralization and improvement in transportation. This poses difficulties in differentiating between neuropsychiatric disabilities resulting from real organic changes and those arising from compensation issues. It is the purpose of this study to seek out the differences between normal and abnormal finding group in the structural brain imaging studies via the results of the functional brain imaging studies and psychological tests. Out of 132 subjects, 62 comprised normal and 70 the abnormal finding group. EEG and SPECT were chosen for inspection of functional brain imaging. MMPI and K-WAIS were chosen for psychological test. The subjects were further divided into right hemispheric damage, left hemispheric damage, both hemispheric damage, diffuse damage group and negative group in order to find out whether any differences in the psychological lest results could be localized. The results are as follows : 1) The abnormal finding group, the EEG and SPECT were proven to be a good predictor of brain lesion. This implies that even in the functional brain studies, abnormalities are more easily detected if there are visible brain lesions. 2) The FSIQ of the abnormal finding group is lower than that of normal finding group. this difference is mainly due to low V1Q. The left hemispheric damage group lend to shaw low V1Q. This lowered in was the difference between left hemispheric damage group and negative group. Furthermore, there were no group differences in the PIQ. It is concluded that K-WAIS is effective as evaluator of VIQ mainly of those patients with left hemispheric damage and it is ineffective as a evaluator of PIQ. 3) In the MMPI profile, the both groups displayed high neurotic profiles. There was no difference in the psychotic profiles. The scores of the Depression and Hystery were high in abnormal finding group. This can be seen as one of the lypical findings of chronic head trauma patients. 4) The abnormal finding group tend to be diagnosed as organic mental disorder in the psychological tests more frequently.

  • PDF