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ABSTRACT 
 

This study exploits the data discriminating capability of silhouette statistics, which combines wavelet-based vertical energy 
threshold technique for the purpose of extracting damage-sensitive features and clustering signals of the same class. This 
threshold technique allows to first obtain a suitable subset of the extracted or modified features of our data, i.e., good predictor 
sets should contain features that are strongly correlated to the characteristics of the data without considering the classification 
method used, although each of these features should be as uncorrelated with each other as possible. The silhouette statistics 
have been used to assess the quality of clustering by measuring how well an object is assigned to its corresponding cluster. We 
use this concept for the discriminant power function used in this paper. The simulation results of damage detection in a truss 
structure show that the approach proposed in this study can be successfully applied for locating both open- and breathing-type 
damage even in the presence of a considerable amount of process and measurement noise.  
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1. Introduction 

This paper investigates a structural damage localization 
problem using a wavelet-based signal classification method 
that extracts signal features with the best discrimination 
ability when classifying the location of stiffness damage in a 
planar truss structure. The proposed approach uses 
simulation data generated from a truss model subjected to 
an unknown random excitation. Since most signal features 
in the damage-induced response are irrelevant to the class 
distinction and inevitably corrupted with measurement 
noises, we first attempt to apply the VET criteria previously 
proposed by Jung et al. [1]. According to these criteria, 
good predictor sets should contain features that are strongly 
correlated to the class distinction, although each of these 
features should be as uncorrelated with each other as 
possible; we thus select differentiated features for data 
dimensionality reduction and noise removal. Secondly, the 
proposed VETS (VET wavelet positions containing large 
silhouette statistics) comprises a few features with highest 
silhouette statistics to find the smaller number of features 
having more discriminating power for localizing a stiffness-
damaged element in a truss structure. 

 

2. Review of Related Theories 

2.1 Wavelet Transformation 
Discrete wavelet transform (DWT) effectively projects a 

temporal signal into a special wavelet basis that entails 
adjustable multiresolution parameters such as scale and 
position to represent a nonstationary signal. Typically, DWT 
is performed on multiple levels with different frequency 
resolutions. As each level of the transformation is 
performed, there is a trade-off between the time and 

frequency resolution. The full DWT for a time domain 
signal in 2L (finite energy), ( )f t , can be represented in 

terms of a shifted version of a scaling function ( )tφ  and a 
shifted and dilated version of a so-called mother wavelet 
function ( )tψ . DWT can be represented as  
 

, , , ,( ) = ( ) ( )L k L k j k j k
k Z j Lk Z

f t c t d tφ ψ
∈ ≥ ∈

+∑ ∑∑             (1) 

 

where ,j kd  are the wavelet coefficients and ,L kc , 

<L J  are the scaling coefficients. These coefficients are 
given by the inner product in 2L , i.e.,  
 

, , , ,=< ( ), ( ) >  and  =< ( ), > .L k L k j k j kc f t t d f tφ ψ     (2) 
 

Here, /2
, ( ) = 2 (2 );L L

L k t t k k Zφ φ − ∈  is a family of 

scalar functions and /2
, ( ) = 2 (2 ); ,j j

j k t t k j L k Zψ ψ − ≥ ∈  

is a family of wavelet functions. If the mother functions are 
properly selected, their family forms an orthogonal basis for 
the signal space. 

Consider a sequence of data 1= ( ( ), , ( ))Ny t y ty L  taken 

from ( )f t  or obtained as a realization of ( ) = ( ) ty t f t ε+  

at equally spaced discrete time points = it t s, where ti
ε s 

are independent and identically distributed (i.i.d.) noises 
following 2(0, )N σ . The discrete wavelet transform 
(DWT) of y  is defined as = Wd y , where W  is the 
orthonormal N N×  DWT matrix. It is given that 

1= ( , , , , )L L L J+d c d d dL , where ,0 ,2
= ( , , )1L L LL

c c −c L , 

,0 ,2
= ( , , )1L L LL

d d −d L , and ,0 ,2
= ( , , )1J J JJ

d d −d L . 
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Using inverse DWT, the 1N ×  vector y  of the original 

signal curve can be reconstructed as = TWy d . By 
applying DWT to the data y s, = Wd y , we obtain the 

following model in the wavelet domain: , , ,=j k j k j kd θ η+  

for = , ,j L JL , = 0,1, , 2 1jk −L , and 

, , ,=L k L k L kc θ η+  for = 0,1, , 2 1Lk −L , where 

2= 1logJ N − . The model can be represented in the vector 
format as follows. 
  
 = θ η+d                                     (3) 

 
where ,θd , and η  represent the collection of all 

coefficients, parameters, and errors, respectively. Since W  
is an orthonormal transform, ,j kη ’s are still i.i.d. 2(0, )N σ  

[6]. In order to simplify the notation used in this paper, 

1 2= ( , , , )Nd d dd K  is used instead of Lkc  and jkd  for 

the components of d . 
 

2.2 Wavelet Model for Multiple Signals 
We denote a vector of N  equally-spaced data points 

from a signal curve, where = 2JN  with some positive 
integer J  and = 1,2, ,i ML  by 1 2= [ , , , ]i i i iNy y y yL . 

Let 1 2= [ , , , ]T
MY y y yL  be the collection of M  

multiple sets of functional data. When DWT W  is applied 
to a data set, the matrix of wavelet coefficients obtained 
from this transformation is = ,D WY  where 

1 2= [ , , , ]T
MD d d dL , 1 2= [ , , , ]i i i iNd d d dL , and imd  is 

the wavelet coefficient at the m th wavelet position for the 
i th data curve. The model of wavelet coefficients D  from 
M  signals is given as follows: 
 

=D ZΘ+                                    (4) 
 

where 1= [ , , ]T
Mθ θΘ L ( 1 2= [ , , , , ]i i i iNθ θ θ θL ) and Z  

is a column of M N×  random errors with normal 
distribution 2(0, )N σ . The measurement error (noise) 
variation of the wavelet coefficients is characterized by the 
common process variance 2σ  for multiple signals. 

 

3. Data Classification Methodology 

3.1 Data Pre-selection by Vertical Energy 
Threshold (VET) 

Most wavelet-related models for analyzing complicated 
signals have focused on feature selection and noise removal 
for the case of a single signal. However, many engineering 
applications require the simultaneous processing of multiple 
signals to understand the nature of a system or to extract 

hidden features of the defects within the system. Although a 
method for single-signal-based wavelet feature selection can 
be applied to process multiple signals, it can cause a 
problem in that different numbers and choices of 
representative wavelet features in different signals 
constitute no “unified wavelet-positions” in the comparison 
of signals, especially in the case of signals from different 
classes in a distinct process effect. Therefore, Jung et al. 
used the advantages afforded by scalograms [2] and 
developed the following VET procedure [1]. This wavelet 
feature selection procedure balances the reconstruction error 
against the data-reduction efficiency and proves that is 
powerful at capturing key patterns in multiple signals while 
removing the embedded noise. The selected wavelet 
coefficients are treated as the “reduced-size” data (reduced 
number of features) in subsequent analysis for decision 
making such as clustering and classification. The study 
introduced the overall relative reconstruction error 
( ORRE ) function for processing multiple signals as 
follows: 
 

( ) = ( ) ( )ORRE λ λ ξ λΛ + ⋅ϒ                      (5) 
 

where  

2 2

=1

2

=1

[ (1 ( > )) ]
( ) =

[ ]

N

vm vm
m

N

vm
m

E d I d

E d

λ
λ

−
Λ

∑

∑
          (6)

                     

2

=1
[ ( > )]

( ) = .

N

vm
m

E I d

N

λ
λϒ

∑
                    (7) 

 
Here, E  represents the expectation of random variables. 

Note that equations (6) and (7) include the indicator 
function, 2( > )vmI d λ , which constitutes the threshold 
parameter. The indicator function is based on the “vertical 
energy” metric, 
            

2 2 2 2
1 2= ,  = 1,2, , ,vm m m Mmd d d d m N+ + +K K    (8) 

 

which is the sum of all wavelet coefficients at the m th 
wavelet position. This is why it is called vertical-energy-
based threshold (VET).  Further, the ORRE criterion was 
originally developed due to the requirement for balancing 
the reconstruction error and the data-reduction ratio. 
Equation (6) represents a “normalized” reconstruction error 
from the wavelet approximation model = TY W D . On the 
other hand, equation (7) indicates the number of normalized 
wavelet coefficients. This term is used as a penalty for 
including an excessive number of wavelet coefficients so 
that the data model can be approximated and represented in 
the simplest manner possible. Normally, the weighting 
parameter of the penalty, ξ , in equation (5) should be 
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defined by the user. Alternatively, it can be provided by the 
generalized cross validation (GCV) method [3]. For 
simplicity, this study assumes = 1ξ , which places equal 
weights on both components, Λ and ϒ . 

Given VET in equation (8), ORRE  is minimized to 
determine λ . Therefore, a simple formula for estimating 
the optimal λ  with ,N Mλ  is developed as 

 

2

=1

= ( )/ .
N

NM vm
m

E d Nλ ∑                         (9) 

 
Since every wavelet coefficient is independent and has a 

normal distribution, the vertical energy of each wavelet 
position follows a non-central chi-square distribution [4]. 
Based on this result and some other calculus derivations, 
Jung et al. [1] proved the optimality of NMλ . Therefore, the 
i th position of the wavelet coefficients (across signals) can 
be selected if its vertical energy is larger than ,N Mλ . 

 

3.2 Discriminant Analysis through Silhouette 
Statistics 

This section describes a new approach for feature 
selection that generates VETS. Silhouette statistics have 
been widely used to assess the quality of clustering by 
measuring how well an object is assigned to its 
corresponding cluster. See reference [2] for more details on 
silhouette statistics. Here, this concept is expanded to the 
discriminant power function, as shown in equation (10) 
below. For signal pattern classification, it is assumed that a 
data set is given in which = ( , ( ))jH d G j

uur
 for 

= 1, ,j ML . The data set has M  data points with well-

defined class labels. Note that 1 2= ( , , , )j j j pjd d d d
uur

L  is 

the signal vector for the j th sample described by p  
predictor variables that are pre-selected by VET (where 

2
=1

= ( > )N
vm NMm

p I d λ∑ , i.e., the number of wavelet 

positions selected by the VET procedure) and 

1 2( ) = { , , , }kG j G G G G∈ L  is the class label associated 

with jd
uur

. Note also that k  is the number of classes and 

kn  is the number of jd
uur

 in kG . The proposed 

discriminant power function based on silhouette statistics at 
the i th VET feature is then defined as 

 

=1

( ) ( )1= , = 1,2, ,
{ ( ), ( )}

M
i j i j

i
i i j i j

b d a d
S i p

M max a d b d

−
∑

uur uur

uur uur L     (10) 

 

where, for j kd G∈
uur

, 
 

1( ) = ( , )
1i j i j j

k d j k

a d d d d
n G

′

′
− ∈

∑
uur uur uur

uur
                 (11) 

1( ) = ( , ).mini j i j j
s k k d j s

b d d d d
n G

′
≠

′∈
∑

uur uur uur

uur
                (12) 

and  
 

2( , ) = ( )i j j ij ijd d d d d′ ′−
uur uur

                       (13) 
 

In other words, ( )i ja d
uur

 is the average distance between 

jd
uur

 and all other samples in the same class with respect to 

the i th wavelet position and ( )i jb d
uur

 is the minimum 

average distance of jd
uur

 to all samples in other classes with 

respect to the i th wavelet position. The discriminant power 
function with respect to the i th wavelet position, iS , 
returns a discriminant power score in the range of –1 to +1, 
and indicates how well all data points can be assigned to 
their own class in terms of the i th wavelet position. 
Intuitively, data points are well-classified by wavelet 
positions with a large silhouette statistic value, data tend to 
lie between classes with small silhouette values, and data 
points are poorly classified by those with negative values. 
According to the perspective of the silhouette statistics, this 
study will utilize iS  to select a few important wavelet 
positions for further cluster visualization and classification 
analysis, i.e., sorting the mean silhouette statistics 
(discriminating power function) in ascending order:  
 

2
(1) (2) ( )

=1
< < < , = ( > )

N

p vm NM
m

S S S p I d λ∑L     (14) 

 

 
Figure 1. Silhouette statitics of 685 VET wavelet positions 
 
Figure 1 shows the silhouette statistics, , = 1, ,iS i pL  

( = 685p  in this simulation) for each VET wavelet 

position. The largest silhouette statistics iS  (= 0.5260) 
leads us to select the first VETS wavelet position (1st VETS 
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wavelet position = 38th VET wavelet position = 8,6d ), the 

second largest iS  (= 0.5136) to the second position (2nd 
VETS wavelet position = 85th VET wavelet position = 

7,21d ), and so on.  

4. Description of Simulations 

4.1 Damage in Truss Structure 
 

The physical system is an eight-bay planar truss structure, 
as shown in Figure 2. The truss structure is 4- m -long and 
has two cross-braces in each bay. All truss members 
comprise an aluminium solid bar whose Young's modulus 
(E) is 970 10 /N m× . Each strut is 2 cm  in diameter and the 
length of each bay is 0.5 m . Its boundary condition is 
shown as a cantilevered truss that is fixed on a solid wall to 
the left. In order to extract the dynamics of the system, 
Gaussian random noise input applies as an excitation force 
at point A as shown in the figure. The response of the 
system, i.e., the end displacement of point S along the 
direction of the arrow is collected as time-history data. 

Here, we investigate two different types of damage. The 
first one is an open-type (slot) crack, implying that no 
stiffness variation occurs as the member experiences 
compression and expansion. In other words, the strut will 
have the same bending stiffness although the member 
undergoes compression (crack closure) and expansion 
(crack opening). On the other hand, a structure having a 
breathing-type (fatigue) crack typically behaves as a 
bilinear system, where the bending stiffness instantaneously 
changes between two states, i.e., undamaged and damaged. 

 
Figure 2. Schematics of an eight-bay planar truss structure 

with possible damage locations (D1~D4), displacement sensor 
location (S), and actuator location (A). 

 
Figure 2 also indicates four possible damage locations 

(D1∼ D4), which will be eventually localized through the 
proposed wavelet-based algorithm. In order to simulate 
structural defects or damage, the bending stiffness (EI) of 
the beam element is reduced by 50% in elements D1 
through D4 (i.e., 1.0 for healthy and 0.5 for damaged state). 
For comparative study, the dynamic behaviour of two 

damage types, i.e., open- and breathing-type crack is also 
realized in this simulation. In order to accommodate 
breathing-type damage, a pair-comparison between two 
nodes of damaged beam elements is performed at each time 
step. According to the result of the current time step, i.e., the 
sign of the relative displacement between adjacent nodes, 
the elemental stiffness matrix is switched to a stiffness-
reduced one for the analysis of the next time step. In other 
words, the compression and expansion modes of the 
damaged strut member alternate between different stiffness 
matrices in each time step. Consequently, nine scenarios are 
investigated, i.e., four damage location cases for two 
different damage types and one healthy case. 
 

4.2 Characteristics of Simulation Data 
 

The simulation generates sampled data at the rate of 1000 
Hz for 20 s resulting in 20,000N =  data points. In order 
to facilitate uncertainties in the severity of damage, the level 
of reduced bending stiffness on the damaged truss member 
is randomly perturbed from its mean value. Therefore, the 
simulation is repeated 10 times to create a group of 
randomly populated data sets for all healthy and damaged 
cases, i.e., the data model of this simulation can be written 
as  

 

= ( ; ) ,  = ( , , , )i i i i i i iy t g a bβ β γ ρ+ (n)f e            (15) 
 

where 1 2= [ , , , ]i i i iNy y y yL  is a vector of N  equally-
spaced data points from the i th signal (i = 1,2,…,10); 

2 4
2

b b ac
a

− ± −(n)e , a vector of random noise; and iβ , a 

signal-specific parameter for the i th signal. While this 
variation in damage severity attempts to mimic unforeseen 
influences in the process error, a white noise ( (n)e ) is 
additionally imposed on each time-history data set to create 
measurement noise. ( )= ( ; ) n

ij j i jy f t β ε+  can be used in 

other expressions. In the above model, ( )g ⋅  is an 
unknown function of parameters such as damage location 

ia , damage severity ib , perturbation level of damage 

severity iγ , and type of damage iρ , i.e., open or breathing 

crack. The damage location parameter ia  is defined as 
 

= {0,1, 2,3,4}ia A∈                         (16) 
 

where = 0ia  indicates that the i th signal is from an 

undamaged (healthy) case. Similarly, if = 1,2,3ia , and 4 , 
the signals are those arising from the damaged cases at 
locations D1, D2, D3, and D4, respectively. ib  and iγ  
are defined as  
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( ) ( ) 2= , (0, ( /3) )b b
i i ib b N k bε ε+ ⋅∼               (17) 

 
where  

 

1 = 0
=

0.5 .
iif a

b
otherwise

⎧
⎨
⎩

 

                         
0 = 0

=
.

i

i

if a
k

otherwiseγ
⎧
⎨
⎩

                           (18) 

 
= {0.1,0.05,0.01}.iγ ∈Γ  

 

In the definition above, ( )b
iε  is a realization of damage 

severity perturbation, i.e., if the signal is from a healthy case 
( = 0ia ), there is neither damage severity nor perturbation 
of damage severity. Unless the signal is from a healthy case, 

( )b
iε  has some value of damage severity perturbation with a 

parameter iγ . Here, the value of iγ  is assumed 

as ( )( < < ) = 2( (3) 0.5) = 0.997b
i i iPr b bγ ε γ− ⋅ ⋅ Φ − , 

where 

2

1 2( ) =
2

x
z

z e dx
π

−

−∞
Φ ∫ . With regard to the damage 

type, 0iρ =  for an open crack case while 

( ; ( ))
iji jf t y tρ =  for a breathing crack, which results in 

the bilinear dynamic behaviour described in the previous 
section. 

As mentioned above, all signals of each damage case 
include randomly perturbed damage severity (in this figure, 

= 0.1iγ ). The signal-to-noise ratio ( SNR ) is defined as 

( )/std f σ , where ( )std f  is the standard deviation of the 
discretized signal points and σ  is the standard deviation 
of noise. In the data model, the realization of measurement 
errors ( )n

jε  is defined as  
 

( ) 2( ( ; = 0))
(0, ( ) )n i

j
std a

N
SNR

ε
f t

∼                 (19) 

 
where ( ( ; = 0))istd af t  is the standard deviation of the 
signal from the healthy case.  
 

5. Damage Localization Results 

5.1 Clustering Analysis using VETS 
Simulation studies are conducted for two different 

damage types (open- and breathing-type cracks), three 
values of damage severity variation parameters 
( = {0.1,0.05,0.01}iγ ∈Γ ), and three SNR  levels (7, 5, 

and 3) on (n)e . The signal from a damaged case with large 

iγ  and small SNR  inherently exhibits more variable and 
noisier signals in a class. Therefore, 18 different simulation 
cases are generated. Furthermore, these cases are created for 
each different damage condition, i.e., four different damage 
locations, respectively. Note that only three SNR  cases 
are considered for the healthy condition. 

 
Figure 3. VETS clustering for the open crack with and 
= 0.01γ and SNR =7. 

 
Figure 4. VETS clustering for the breathing crack with and 
= 0.01γ and SNR =7. 
 
This study shows a few representative cases with the 

most variable simulation setting ( = 0.1γ  and = 3SNR ) 
and the least variable one ( = 0.01γ  and SNR ) for both 
open and breathing damage cases. Figures 7 through 10 
show some of the results from the clustering analysis for 
damage classification using the VETS wavelet positions. 
The goal of VETS-based clustering is to discriminate the 
existence, type, and location of damage in a truss structure. 
Here, the first three VETS wavelet positions are used for 
extracting damage-sensitive features for clustering. As 
shown in Figure 3, four different damage locations, i.e., 
D1~D4 along with the healthy case are clearly localized in a 
group when they are projected to the first three VETS 
wavelet positions. Obviously, the damage locations in the 
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breathing-type damage cases (Figure 4) are less distinct than 
those in the open-type ones (Figure 3) under the same 
perturbation parameter and SNR . This trend becomes more 
significant as γ  increases and SNR  decreases, as shown 
in Figures 5 and 6. With regard to an extreme case, the 
largest process perturbation 0.1γ =  and the lowest 

3SNR =  in conjunction with breathing-type damage 
produced the worst discrimination result, as shown in 
Figure 6. However, all 50 signals generated from the four 
different damage locations and one healthy condition (ten 
for each condition) have been sufficiently separated and 
well clustered overall for both open- and breathing-type 
damage. One can predict that as γ  increases above 0.1, 
i.e., the uncertainty of damage severity increases, the size of 
the VETS cluster will also increase. This trend can be used 
to statistically determine the confidence level of a damage 
location.  

 
Figure 5. VETS clustering for the open crack with and 
= 0.1γ and SNR =3. 
 

 
Figure 6. VETS clustering for the breathing crack with and 
= 0.1γ and SNR =3. 

6. Conclusions 
This study uses an eight-bay planar truss structure to 

validate the proposed damage localization method. Two 
different types of damage, i.e., open and breathing 
conditions are investigated to test the benefits of 
wavelet-based signal processing. The simulated time 
history responses are processed to extract damage-
sensitive wavelet positions, which are further developed 
to classify damage locations by exploiting VETS-based 
clustering analysis. The simulation results showed that 
the proposed approach successfully classified and 
localized the locations of stiffness-reduced damage in a 
truss structure even with a significant amount of noise 
and damage severity uncertainties. 
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