• Title/Summary/Keyword: damage plasticity

Search Result 283, Processing Time 0.146 seconds

Finite element analysis of shallow buried tunnel subjected to traffic loading by damage mechanics theory

  • Mohammadreza Tameh
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.57-68
    • /
    • 2024
  • Tunnels offer myriad benefits for modern countries, and understanding their behavior under loads is critical. This paper analyzes and evaluates the damage to buried horseshoe tunnels under soil pressure and traffic loading. To achieve this, a numerical model of this type of tunnel is first created using ABAQUS software. Then, fracture mechanics theory is applied to investigate the fracture and damage of the horseshoe tunnel. The numerical analysis is based on the damage plasticity model of concrete, which describes the inelastic behavior of concrete in tension and compression. In addition, the reinforcing steel is modeled using the bilinear plasticity model. Damage contours, stress contours, and maximum displacements illustrate how and where traffic loading alters the response of the horseshoe tunnel. Based on the results, the fracture mechanism proceeded as follows: initially, damage started at the center of the tunnel bottom, followed by the formation of damage and micro-cracks at the corners of the tunnel. Eventually, the damage reached the top of the concrete arch with increasing loading. Therefore, in the design of this tunnel, these critical areas should be reinforced more to prevent cracking.

Prediction of Necking in Tensile Test using Crystal Plasticity Model and Damage Model (결정소성학 모델과 손상 모델을 이용한 박판소재의 네킹 예측)

  • Kim, Jong-Bong;Hong, Seung-Hyun;Yoon, Jeong-Whan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.818-823
    • /
    • 2012
  • In order to predict necking behaviour of aluminium sheets, a crystal plasticity model is introduced in the finite element analysis of tensile test. Due to the computational limits of time and memory, only a small part of tensile specimen is subjected to the analysis. Grains having different orientations are subjected to numerical tensile tests and each grain is discretized by many elements. In order to predict the sudden drop of load carrying capacity after necking, a well-known Cockcroft-Latham damage model is introduced. The mismatch of grain orientation causes stress concentration at several points and damage is evolved at these points. This phenomenon is similar to void nucleation. In the same way, void growth and void coalescence behaviours are well predicted in the analysis. For the comparison of prediction capability of necking, same model is subjected to finite element analysis using uniform material properties of polycrystal with and without damage. As a result, it is shown that the crystal plasticity model can be used in prediction of necking and fracture behavior of materials accurately.

Study on the irradiation effect of mechanical properties of RPV steels using crystal plasticity model

  • Nie, Junfeng;Liu, Yunpeng;Xie, Qihao;Liu, Zhanli
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.501-509
    • /
    • 2019
  • In this paper a body-centered cubic(BCC) crystal plasticity model based on microscopic dislocation mechanism is introduced and numerically implemented. The model is coupled with irradiation effect via tracking dislocation loop evolution on each slip system. On the basis of the model, uniaxial tensile tests of unirradiated and irradiated RPV steel(take Chinese A508-3 as an example) at different temperatures are simulated, and the simulation results agree well with the experimental results. Furthermore, crystal plasticity damage is introduced into the model. Then the damage behavior before and after irradiation is studied using the model. The results indicate that the model is an effective tool to study the effect of irradiation and temperature on the mechanical properties and damage behavior.

Homogenized Elastic-plastic Relation based on Thermodynamics and Strain Localization Analyses for Particulate Composite (열역학 기반 내부 변수를 이용한 균질화 탄소성 구성방정식 및 입자강화 복합재에서의 소성변형집중)

  • S. J. Yun;K. K. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.1
    • /
    • pp.18-35
    • /
    • 2024
  • In the present work, the evolution rules for the internal variables including continuum damage factors are obtained using the thermodynamic framework, which are in turn facilitated to derive the elastic-plastic constitutive relation for the particulate composites. Using the Mori-Tanaka scheme, the homogenization on state and internal variables such as back-stress and damage factors is carried out to procure the rate independent plasticity relations. Moreover, the degradation of mechanical properties of constituents is depicted by the distinctive damages such that the phase and interfacial damages are treated individually accordingly, whereas the kinematic hardening is depicted by combining the Armstrong-Frederick and Phillips' back-stress evolutions. On the other hand, the present constitutive relation for each phase is expressed in terms of the respective damage-free effective quantities, then, followed by transformation into the damage affected overall nominal relations using the aforementioned homogenization concentration factors. An emphasis is placed on the qualitative analyses for strain localization by observing the perturbation growth instead of the conventional bifurcation analyses. It turns out that the proposed constitutive model offers a wide range of strain localization behavior depending on the evolution of various internal variable descriptions.

A New Yield Function for Voided Materials (보이드 재료에 대한 새로운 항복함수의 제안)

  • 김성태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.13-16
    • /
    • 2000
  • In this paper the authors proposed a new anisotropic yield criterion for porous ductile materials. By using the proposed yield criterion and its flow rules a damage evolution of anisotropic sheet under biaxial tensile loading is investigated. A comparison of yield locus and damage evolution between the proposed yield criterion and experiments are carried out. the results are in good agreement.

  • PDF

Application of Critical Damage Value to Continuous Drawing Process using FEM (연속 인발공정에서 유한요소법을 이용한 Critical Damage Value 의 적용)

  • 박동인;김병민;고대철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.291-295
    • /
    • 2003
  • The occurrence of ductile fracture is the working limit of many metal forming processes. It is necessary to predict the criteria and to apply the condition in a process design. Over the years. the way for clarifying conditions have been studied and presented. However such a way needs lots of experiments and analysis. In this study, in order to determine the critical damage value of a used material Cu 4N, it was performed a tensile test and FEM analysis by using DEFORM 2D. For applying the obtained critical damage value it was also performed a upsetting test by using DEFORM 2D. The way of determining a critical damage value which is presented in this study will make possible to find easily it which is one of the working limit factor. And the way of determining a critical damage value will make possible to find in multi-pass drawing process.

  • PDF

Prediction of the Brittle Damage Evolution in Extrusion/Forging Die (압출/단조 금형의 취성결함성장예측)

  • 여은구;이용신;나경환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.220-223
    • /
    • 1998
  • The failure of die often occurs as a result of growth of microcracks - referred as a brittle damage. In this study, an analysis of brittle damage evolution cupled with elastic finite element analysis of die deformation is presented. A local transformation from the tractions of a workpiece mesh to those of a die mesh is developed. The brittle damage is defined as a vector considering the shape of common microcracks in the brittle metals and the damage function suggested by Krajcinovic is utillized. Applications of the proposed model to modeling damage evolution in the extrusion die and forging die are given and the characteristics of brittle damage evolution in die are in detail examined.

  • PDF

Combined Two-Back Stress Models with Damage Mechanics Incorporated (파손역학이 조합된 이중 후방응력 이동경화 구성방정식 모델)

  • Yun, Su-Jin
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.161-169
    • /
    • 2008
  • In the present work, the two-back stress model is proposed and continuum damage mechanics (CDM) is incorporated into the plastic constitutive relation in order to describe the plastic deformation localization and the damage evolution in a deforming continuum body. Coupling between damage mechanics and isothermal rate independent plasticity is performed using the kinematic hardening rule, which in turn is formulated by combining the nonlinear Armstrong-Frederick rule and the Phillips rule. The numerical analyses are carried out within h deformation theory. It is noted that the damage evolution within a work piece accelerates the plastic deformation localization such that the material with lower hardening exponent results in a rapid shear band formation. Moreover, the results from the numerical analysis reflected closely with the micro-structures around the fractured regime. The effects of the various hardening parameters on deformation localization are also investigated. As the nonlinear strain rate description in the back stress evolution becomes dominant, the strain localization becomes intensified as well as the damage evolution.

Plasticity Model for Directionality of Concrete Crack Damages (콘크리트 균열 손상의 방향성을 고려한 다중파괴기준 소성 모델)

  • Kim, Jae-Yo;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.655-664
    • /
    • 2007
  • The inherent characteristic of concrete tensile cracks, directional nonlocal crack damage, causes so-called rotating tensile crack damage and softening of compressive strength. In the present study, a plasticity model was developed to describe the behavior of reinforced concrete planar members In tension-compression. To describe the effect of directional nonlocal crack damage, the concept of microplane model was combined with the plasticity model. Unlike existing models, in the proposed model, softening of compressive strength as well as the tensile crack damage were defined by the directional nonlocal crack damage. Once a tensile cracking occurs, the microplanes of concrete are affected by the nonlocal crack damage. In the microplanes, microscopic tension and compression failure surfaces are calculated. By integrating the microscopic failure surfaces, the macroscopic failure surface is calculated. The proposed model was implemented to finite element analysis, and it was verified by comparisons with the results of existing shear panel tests.