• Title/Summary/Keyword: damage information

Search Result 3,051, Processing Time 0.03 seconds

Experimental Modal Analysis for Damage Identification in Foundation-Structure Interface of Caisson-type Breakwater (케이슨식 방파제 지반-구조 경계부 손상식별을 위한 실험적 모드분석)

  • Lee, So-Young;Lee, So-Ra;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • This paper presents an experimental modal analysis of a caisson-type breakwater to produce basic information for the structural health assessment of a caisson structure. To achieve the objective, the following approaches are implemented. First, modal analysis methods are selected to examine the modal characteristics of a caisson structure. Second, experimental modal analyses are performed using finite element analyses and lab-scale model tests. Third, damage scenarios that include several damage levels in a foundation-structure interface are designed. Finally, the effects of damage on the modal characteristics are analyzed for the purpose of utilizing them for damage identification.

Introduction to Qunatification of Damage Parameters for Concrete Using X-ray Computed Tomography (X-ray Computed Tomography를 이용한 콘크리트의 손상파라미터 정량화)

  • 박대효;박재민;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.501-504
    • /
    • 2003
  • The purpose of this work is to introduce some fundamental stereological concepts to quantify damage parameters using X-ray CT(Computed Tomography) in the scope of CDM(Continuum Damage Mechanics). X-ray CT is a completely nondestructive technique for visualizing features in the interior of opaque solid objects, and for obtaining digital information on their 3D geometries and properties. Many researchers have introduced lots of damage parameters to model the mechanical behavior of deteriorated materials. Those damage parameters can be represented in many forms such as specific void or crack surfaces, the spacing between cracks, the specific damaged surface area, the specific damaged surface area tensor, the mean solid path among the damaged surfaces and the mean solid path tensor. Despite of many accomplishments in CDM since there is no the systematic experiment, it have limitations in application. In this situation, X-ray computed tomography is highlited by many researchers and applied in a wide range of materials including rock, bone, ceramic, metal, soft tissue and concrete.

  • PDF

Damage Detection of Fiber-Metal Laminates Under Axial and Indentation Load (섬유-금속 적층판의 인장 및 압입 하중에서의 손상감지)

  • Yang, Yoo-Chang;Han, Kyung-Seop
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.370-375
    • /
    • 2003
  • Optical fiber vibrations sensors (OFVSs) and extrinsic Fabry-Perot interferometer (EFPI) were used in damage monitoring of fiber-metal laminates(FML). The optical fiber vibration sensor and EFPI were applied in order to detect and evaluate the strain, damage and failure of FML. Damages in composites, such as matrix cracks, delamination and fiber breakage may occur as a result of excessive load, fatigue and low-velocity impacts. Tensile and indentation test was performed with the measurement of optical signal and acoustic emission (AE). The signals of the optical fiber vibration sensor due to damages were quantitatively evaluated by wavelet transform. It was found that damage information of comparable in quality to acoustic emission data could be obtained from the optical fiber vibration sensor signals.

  • PDF

Hybrid Monitoring for Damage Detection in Structural Joints (구조 접합부의 손상검색을 위한 하이브리드 모니터링)

  • Kim Jeong-Tae;Na Won-Bae;Lee Byung-Jun;Hong Dong-Soo;Do Han-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.225-231
    • /
    • 2006
  • The purpose of this study is to develop a promising hybrid structural health monitoring system for structural joints. For this propose, the combined use of vibration-based techniques and electro-mechanical impedance technique is employed. For the verification of the proposed health monitoring scheme, a series of damage scenarios are designed to simulate various situations at which the connection joints can experience during their service life. The obtained experimental results, modal parameters and electro-magnetic impedance signatures, are carefully analyzed to recognize the connecting states and the target damage locations. From the analysis. it is shown that the proposed hybrid health monitoring system is successful for acquiring global and local damage information on the structural joints.

  • PDF

Damage and Failure Detection of Fiber-Metal Laminates Under Indentation Load (섬유-금속 적층판의 압입 하중에서의 손상 및 파손 검출)

  • 양유창;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.42-45
    • /
    • 2003
  • Optical fiber vibrations sensors (OFVSs) and extrinsic Fabry-Perot interferometer (EFPI) were used in damage monitoring of fiber-metal laminates(FML). The optical fiber vibration sensor and EFPI were applied in order to detect and evaluate the strain, damage and failure of FML. Damages in composites, such as matrix cracks, delamination and fiber breakage may occur as a result of excessive load, fatigue and low-velocity impacts. Indentation test was performed with the measurement of optical signal and acoustic emission (AE). The signals of the optical fiber vibration sensor due to damages were quantitatively evaluated by wavelet transform. It was found that damage information of comparable in quality to acoustic emission data could be obtained from the optical fiber vibration sensor signals.

  • PDF

Explosion Proof of Fiber Reinforced Cement Composite Panel subjected to Contact Explosion (접촉폭발에 의한 섬유보강 시멘트 복합체의 방폭성능)

  • Kim, Yun-Hwan;Kim, Gyu-Yong;Kim, Hong-Seop;Lee, Bo-Kyeong;Lee, Sang-Gyu;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.128-129
    • /
    • 2016
  • This paper evaluates experimentally the explosion proof of fiber reinforced cement composite(FRCC) panels with various fibers of 2 % volume fraction subjected to contact explosions using an emulsion explosive. As a results, the proportion of the total damage in FRCC panels is not biased scabbing on the rear side with contrast to plain panels, which means that the local damage of FRCC panels was significantly controlled. The experimental results presented useful information for prediction of limited thickness on the local damage subjected to contact explosions through comparison with existing damage evaluation prediction equations.

  • PDF

A new pitch-catch method for structural damage detection (구조손상 검출을 위한 새로운 Pitch-catch 기법)

  • Choi, Jung-Sik;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.148-151
    • /
    • 2009
  • In these days it is important to secure the life and stability of the structure such as aircrafts, automobiles and building. So the structural health monitoring is needed. In conventional lamb wave techniques, damage is identified by comparing the measured data (baseline signals) and the current data. But this method can lead to high false signal in the intact condition of the structure due to environmental conditions of the structure. As a solution to resolve it, the structural health monitoring method which doesn't use baseline signals is necessary. Damaged structure has unusual elastic wave. This paper proposed a PC(pitch-catch) method which doesn't use baseline signal. New baseline signals can get from detection signal. Damage signals based on new baseline signals. This paper made an image includes damage information by applying damage-signals to beamformming.

  • PDF

A Basic Study on Reginal Prediction Model for Building Damage Costs acrroding to Hurricane (태풍에 따른 지역별 건물피해액 예측모델 개발 기초연구)

  • Kim, Boo-Young;Yang, Seongpil;Kim, Sang ho;Cho, Han Byung;Son, Kiyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.253-254
    • /
    • 2015
  • Currently, according to the climate change, the damages due to the hurricane is more increased than before. In this respect, several countries have been conducted the studies regarding the damage prediction model of buildings to minimize the damages from natural disaster. As hurricane is the complex disaster including a strong wind and heavy rain, to predict the damage of hurricane, various factors has to be considered. However, mostly research has been conducted to consider only hurricane properties. Therefore, the objective of this study is to develop the regression model for predicting damages of buildings considering geography, socio-economy, construction environment and hurricane information. In the future, this study can be utilized to developing damage prediction model for building from hurricane in South Korea.

  • PDF

Damage assessment of a bridge based on mode shapes estimated by responses of passing vehicles

  • Oshima, Yoshinobu;Yamamoto, Kyosuke;Sugiura, Kunitomo
    • Smart Structures and Systems
    • /
    • v.13 no.5
    • /
    • pp.731-753
    • /
    • 2014
  • In this study, an indirect approach is developed for assessing the state of a bridge on the basis of mode shapes estimated by the responses of passing vehicles. Two types of damages, i.e., immobilization of a support and decrease in beam stiffness at the center, are evaluated with varying degrees of road roughness and measurement noise. The assessment theory's feasibility is verified through numerical simulations of interactive vibration between a two-dimensional beam and passing vehicles modeled simply as sprung mass. It is determined that the damage state can be recognized by the estimated mode shapes when the beam incurs severe damage, such as immobilization of rotational support, and the responses contain no noise. However, the developed theory has low robustness against noise. Therefore, numerous measurements are needed for damage identification when the measurement is contaminated with noise.

A Model-based Study on the Expansion of Measured Data and the Damage Detection (모델기반의 계측데이터 확장 및 손상 추정에 관한 연구)

  • Kang, Taik-Seon;Lee, Byeong-Hyeon;Eun, Hee-Chang
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.3-10
    • /
    • 2018
  • It's not practical to collect all information at the entire degrees of freedom of finite element model. The incomplete measurements should be expanded for subsequent analysis and damage detection. This work presents the analytical methods to expand the incomplete static or dynamic response data. Using the expanded data, introducing the concept of residual force, and minimizing the performance index expressed as the stiffness matrix and its difference before and after damage, the variation in stiffness matrix is derived. Based on the difference in the stiffness matrix, the damage detection method of structures is also provided. The validity of the proposed methods is illustrated in a numerical application, the numerical results are analyzed for applications, and the applicability of both methods is investigated.